УДК: 544.31;544.3.03;544.35

# ОБЪЕМНЫЕ СВОЙСТВА РАСТВОРОВ ДИМЕТИЛСУЛЬФОНА В СМЕШАННОМ РАСТВОРИТЕЛЕ (ЭТАНОЛ-ВОДА) В ИНТЕРВАЛЕ ТЕМПЕРАТУР 298,15-323,15 К

## Е.А. Казоян, Ш.А. Маркарян

Егине Амаяковна Казоян, Шираз Александрович Маркарян \*

Кафедра физической и коллоидной химии, Ереванский государственный университет, ул. Алека Манукяна, 1, Ереван, Армения, 0025

E-mail: heghine@ysu.am, shmarkar@ysu.am \*

Плотности растворов диметилсульфона в смеси этанол-вода различного состава в диапазоне до допустимой концентрации измерены с помощью колебательно-резонансного денсиметра Anton Paar DMA 4500 в интервале температур 298,15-323,15К. Максимальное количество этанола в смешанном растворителе составило не более 0,75 мольной доли. На основании экспериментальных значений плотностей рассчитаны кажущиеся мольные объемы растворов. Показано, что кажущиеся мольные объемы увеличиваются с ростом температуры смешанного растворителя всех составов. Для выявления влияния содержания этанола на объемные свойства растворов диметилсульфон+(этанол-вода), методом экстраполяции были оценены парциальные мольные объемы при бесконечном разбавлении. Установлено, что в присутствии этанола в больших количествах в растворах диметилсульфон+(этанол-вода) кажущийся мольный объем и парциальный мольный объём диметилсульфона увеличиваются. Наблюдаемые явления объясняются наличием конкуренции взаимодействий между молекулами компонентов. Определены также значения парциального мольного объема переноса диметилсульфона из воды в водный раствор этанола. Величины парциальных мольных объемов переноса могут быть интерпретированы на основе модели Герни о перекрывании сольватных сфер растворенных веществ при их растворении в воде. В данной работе показано, что положительные значения парциального мольного объема переноса в случае трехкомпонентной системы, содержащей 0,75 мольной доли этанола, обусловлены доминированием гидрофильных взаимодействий и образованием водородных связей между растворенным веществом и смешанным растворителем. Отрицательное значение парциальных мольных объемов переноса диметилсульфона при меньшей концентрации этанола в растворе связано с преобладанием гидрофобных взаимодействий в исследуемых растворах.

Ключевые слова: диметилсульфон, этанол, денсиметрия, кажущийся мольный объем

UDC: 544.31;544.3.03;544.35

## VOLUMETRIC PROPERTIES OF SOLUTIONS OF DIMETHYLSULFONE IN ETHANOL-WATER MIXTURE AT TEMPERATURES RANGE OF 298.15-323.15 K

## H.H. Ghazoyan, S.A. Markaryan

Heghine H. Ghazoyan, Shiraz A. Markaryan \* Department of Physical and Colloid Chemistry, Yerevan State University, Alek Manukyan st., 1, Yerevan, 0025, Armenia E-mail: heghine@ysu.am, shmarkar@ysu.am \*

Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 7

This paper studies volumetric properties of ternary dimethylsulfone-ethanol-water systems. The biomedical and environmental significance for the fundamental investigations of aqueous solution of dimethylsulfone and influences of third component on volumetric behavior of this system arises from several reasons. In the global sulfur cycle dimethylsulfide is converted to dimethylsulfone leading to an annual atmospheric production of some million tones of dimethylsulfone, much of which would be deposited in rain and snow. In addition, dimethylsulfone has been extensively studied from a medical point of view. It was established that dimethylsulfone is contained in small amounts in human blood and urine. Also of interest is that methionine is transformed into dimethylsulfone in living organisms. In this work densities of solution of dimethylsulfone in ethanol-water mixtures with various compositions have been measured over available concentration range. As it is evident from experimental data, the increase in a temperature leads to the reduction of density. The apparent and partial molar volumes of solutions were determined over the 298.15–323.15K temperature range. As it follows from these data, the apparent molar volumes increase with increasing of temperature. The influence of ethanol on the volumetric behavior has been taken into account by changing the apparent molar volume compared with the apparent molar volume of the binary aqueous solutions of DMSO2. It is found also the effect of the amount of ethanol on the volumetric properties of these solutions. It is interesting that the effect of ethanol on the values of apparent molar volumes does not change monotone with increasing in quantity of ethanol in ethanol-water mixture. In dimethylsulfone+(ethanol-water) solutions the partial molar volume of dimethylsulfone increases when quantity of ethanol in ethanol-water mixture more than 0.5 molar fraction. The observed phenomena are explained by the presence of competition of intermolecular interactions. In the DMSO2-ethanol-water system the strongest interaction between ethanol and water molecules leads to the increase in partial molar volumes for DMSO2.

Key words: dimethylsulfone, ethanol, densimetry, apparent molar volume

#### Для цитирования:

Казоян Е.А., Маркарян Ш.А. Объемные свойства растворов диметилсульфона в смешанном растворителе (этанолвода) в интервале температур 298,15-323,15 К. *Изв. вузов. Химия и хим. технология.* 2017. Т. 60. Вып. 7. С. 27–33. **For citation:** 

Ghazoyan H.H., Markaryan S.A. Volumetric properties of solutions of dimethylsulfone in ethanol-water mixture at temperatures range of 298.15-323.15 K. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2017. V. 60. N 7. P. 27–33.

### ВВЕДЕНИЕ

Биомедицинское и экологическое значения фундаментального исследования водных и водноорганических растворов диметилсульфона (ДМСО2) обусловлены несколькими причинами.

Во-первых, ДМСО2, который также известен под названием метилсульфонилметан (МСМ), широко применяется в биомедицинской области [1]. Установлено, что ДМСО2 в небольших количествах находится в крови и моче человека [2, 3]. Интересно также, что в живых организмах происходит преобразование метионина в ДМСО2.

Кроме того, ДМСО2 участвует в глобальном биогеохимическом цикле серы: за год вместе с осадками на Землю выпадает несколько миллион тонн ДМСО2, вырабатываемого в атмосфере [4-6].

Ранее нами были исследованы объемные и поверхностные свойства водных растворов ДМСО2

и диэтилсульфона (ДЭСО2), а также и влияние третьего компонента на объемные свойства водных растворов ДМСО2 [7, 8].

В данной работе исследованы объемные свойства ДМСО2 в смешанном растворителе этанол-вода и рассчитаны кажущиеся и парциальные мольные объемы в температурном интервале 298,15-323,15 К.

Изменение объемных свойств раствора в присутствии третьего компонента является признаком взаимодействий, которые имеют место в исследуемой системе, поэтому детальное исследование объемных характеристик сульфонов в смешанных водно-органических растворителях имеет большое значение с научной точки зрения.

Несмотря на то, что между молекулами ДМСО2 и воды образуются водородные связи [9], процесс растворения является эндотермическим Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 7

[7]. Очевидно, что в этом случае преобладает эндотермический эффект от разрушения кристаллической решетки сульфона в процессе его растворения в воде. С другой стороны, процесс смешивания этанола с водой является экзотермическим [10], так как между молекулами этанола и воды образуются сильные водородные связи [11]. Очевидно, что наличие конкуренции этих взаимодействий значительно повлияет на объемные свойства исследуемых растворов.

## МЕТОДИКА ЭКСПЕРИМЕНТА

ДМСО2-белый кристаллический порошок с максимальной растворимостью в воде 2,3 моль/кг. ДМСО2 (чистота 99,5%) и абсолютный этанол (чистота 99,7%) были получены из AldrichChemicalCo.

Плотности растворов измеряли с помощью колебательно-резонансного денсиметра Anton Paar DMA 4500 в температурном интервале 298,15-323,15 К. Точность измерения плотности и температуры составляла соответственно  $\pm 5 \cdot 10^{-5}$  г/см<sup>3</sup> и  $\pm 0,01$  К.

Все растворы приготовлены на основе бидистиллированной воды гравиметрическим методом с точностью  $\pm 1 \cdot 10^{-3}$ г с помощью аналитических весов Sartorius CPA6235.

#### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Экспериментальные данные плотностей ( $\rho$ ) растворов ДМСО2+(этанол-вода) в температурном интервале 298,15-323,15 К представлены в табл. 1.

### Таблица 1 Плотности растворов ДМСО2+ (этанол-вода) при разных температурах Table 1. Densities of DMSO2+(ethanol-water) solutions at different temperatures

| т,                        | $\rho$ , г/см <sup>3</sup> |          |          |          |          |          |  |  |
|---------------------------|----------------------------|----------|----------|----------|----------|----------|--|--|
| моль/кг                   | 298,15 K                   | 303,15 K | 308,15 K | 313,15 К | 318,15 K | 323,15 K |  |  |
| ДМСО2+(этанол-вода)       |                            |          |          |          |          |          |  |  |
| Х <sub>этанол</sub> =0,27 |                            |          |          |          |          |          |  |  |
| 0,0000                    | 0,91823                    | 0,91523  | 0,91223  | 0,90923  | 0,90623  | 0,90323  |  |  |
| 0,1692                    | 0,92182                    | 0,91882  | 0,91582  | 0,91282  | 0,90982  | 0,90682  |  |  |
| 0,2672                    | 0,92444                    | 0,92144  | 0,91844  | 0,91544  | 0,91244  | 0,90944  |  |  |
| 0,3494                    | 0,92706                    | 0,92406  | 0,92106  | 0,91806  | 0,91506  | 0,91206  |  |  |
| 0,4372                    | 0,92841                    | 0,92541  | 0,92241  | 0,91941  | 0,91641  | 0,91341  |  |  |
| 0,5083                    | 0,92967                    | 0,92667  | 0,92367  | 0,92067  | 0,91767  | 0,91467  |  |  |
| 0,5978                    | 0,93164                    | 0,92864  | 0,92564  | 0,92264  | 0,91964  | 0,91664  |  |  |
| 0,6482                    | 0,93265                    | 0,92965  | 0,92665  | 0,92365  | 0,92065  | 0,91765  |  |  |
| 0,7717                    | 0,93526                    | 0,93226  | 0,92926  | 0,92626  | 0,92326  | 0,92026  |  |  |
| 0,8726                    | 0,93758                    | 0,93458  | 0,93158  | 0,92858  | 0,92558  | 0,92258  |  |  |
| 1,0010                    | 0,94015                    | 0,93715  | 0,93415  | 0,93115  | 0,92815  | 0,92515  |  |  |

| ЛМСО2+(этанол-вола) |         |         |                      |         |         |         |  |  |
|---------------------|---------|---------|----------------------|---------|---------|---------|--|--|
| $X_{2mayan} = 0.46$ |         |         |                      |         |         |         |  |  |
| 0.0000              | 0.87350 | 0.86956 | 0.86522              | 0.86087 | 0.85645 | 0.85196 |  |  |
| 0.1009              | 0.87642 | 0.87223 | 0.86794              | 0.86358 | 0.85916 | 0.85467 |  |  |
| 0.1532              | 0.87760 | 0.87340 | 0.86910              | 0.86474 | 0.86032 | 0.85583 |  |  |
| 0,2005              | 0,87892 | 0,87473 | 0,87043              | 0,86607 | 0,86164 | 0,85715 |  |  |
| 0,2531              | 0,88003 | 0,87584 | 0,87154              | 0,86717 | 0,86275 | 0,85826 |  |  |
| 0,2980              | 0,88114 | 0,87694 | 0,87264              | 0,86827 | 0,86384 | 0,85935 |  |  |
| 0,3374              | 0,88219 | 0,87798 | 0,87368              | 0,86931 | 0,86489 | 0,86039 |  |  |
| 0,4003              | 0,88360 | 0,87943 | 0,87512              | 0,87075 | 0,86632 | 0,86183 |  |  |
| 0,4502              | 0,88491 | 0,88071 | 0,87639              | 0,87203 | 0,86757 | 0,86310 |  |  |
| 0,4959              | 0,88619 | 0,88198 | 0,87767              | 0,87330 | 0,86887 | 0,86438 |  |  |
| 0,5519              | 0,88732 | 0,88315 | 0,87883              | 0,87446 | 0,87003 | 0,86553 |  |  |
| 0,5925              | 0,88851 | 0,88430 | 0,87997              | 0,87562 | 0,87121 | 0,86671 |  |  |
| 0,6466              | 0,88997 | 0,88577 | 0,88146              | 0,87769 | 0,87319 | 0,86872 |  |  |
| 0,6881              | 0,89124 | 0,88703 | 0,88270              | 0,87833 | 0,87391 | 0,86941 |  |  |
| 0,7472              | 0,89212 | 0,88791 | 0,88357              | 0,87921 | 0,87477 | 0,87027 |  |  |
| 0,7574              | 0,89246 | 0,88826 | 0,88394              | 0,87956 | 0,87513 | 0,87063 |  |  |
| 0,8243              | 0,89433 | 0,89012 | 0,88581              | 0,88142 | 0,87700 | 0,87243 |  |  |
|                     |         | ДМСО2   | 2+(этано             | л-вода) |         |         |  |  |
|                     |         | $X_{3}$ | танол=0,7            | 75      |         |         |  |  |
| 0,0000              | 0,82033 | 0,81592 | 0,81147              | 0,80695 | 0,80238 | 0,79774 |  |  |
| 0,1005              | 0,82231 | 0,81790 | 0,81344              | 0,80892 | 0,80434 | 0,79970 |  |  |
| 0,1537              | 0,82371 | 0,81930 | 0,81484              | 0,81032 | 0,80574 | 0,80109 |  |  |
| 0,2004              | 0,82515 | 0,82073 | 0,81626              | 0,81174 | 0,80716 | 0,80251 |  |  |
| 0,2456              | 0,82632 | 0,82191 | 0,81744              | 0,81291 | 0,80833 | 0,80368 |  |  |
| 0,3007              | 0,82811 | 0,82369 | 0,81922              | 0,81469 | 0,81011 | 0,80545 |  |  |
| 0,3499              | 0,82943 | 0,82501 | 0,82054              | 0,81601 | 0,81141 | 0,80677 |  |  |
| 0,3956              | 0,83002 | 0,82559 | 0,82112              | 0,81659 | 0,81200 | 0,80735 |  |  |
| 0,4464              | 0,83140 | 0,82698 | 0,82250              | 0,81797 | 0,81337 | 0,80872 |  |  |
| 0,5004              | 0,83274 | 0,82831 | 0,82384              | 0,81930 | 0,81470 | 0,81005 |  |  |
| 0,5483              | 0,83428 | 0,82985 | 0,82537              | 0,82083 | 0,81624 | 0,81158 |  |  |
| 0,5958              | 0,83514 | 0,83070 | $0,8262\overline{2}$ | 0,82168 | 0,81708 | 0,81242 |  |  |
| 0,6461              | 0,83715 | 0,83266 | 0,82816              | 0,82360 | 0,81899 | 0,81432 |  |  |
| 0,7044              | 0,83839 | 0,83388 | 0,82938              | 0,82483 | 0,82022 | 0,81555 |  |  |

На рис. 1 показаны концентрационные зависимости плотностей исследуемых растворов. Как видно из рисунка, с увеличением содержания этанола плотности растворов закономерно уменьшаются.

Последующая обработка данных проведена согласно методике, разработанной для трехкомпонентных растворов и представленной в [12].

На основании экспериментальных значений плотностей рассчитаны кажущиеся мольные объемы (табл. 2) по уравнению (1):

$$V_{\phi,3} = \frac{M_3}{\rho} + \frac{\rho_o - \rho}{\rho \cdot \rho_o} \left( \frac{M_2 m_2 + 1000}{a \cdot m_2} \right), \tag{1}$$

где  $M_3$  и  $M_2$  – молярные массы ДМСО2 и этанола (г/моль),  $\rho_0$  и  $\rho$  – плотности смешанного растворителя этанол-вода и трехкомпонентного раствора (г/см<sup>3</sup>),  $m_2$  – моляльность смеси этанол-вода (моль/кг),  $a = n_3/n_2$ , где  $n_3$  и  $n_2$  – число молей ДМСО2 и этанола.



Рис. 1. Плотности растворов ДМСО2 при температуре 298,15К: ДМСО2+вода (1); ДМСО2+(этанол-вода) Хэтаиол=0,27 (2); ДМСО2+(этанол-вода) Хэтанол=0,46 (3); ДМСО2+(этанол-вода) Хэтанол=0,75 (4) Fig. 1. Densities of solutions at 298.15K: DMSO2+water (1);

Fig. 1. Densities of solutions at 298.15K: DMSO2+water (1); DMSO2+(ethanol-water) X<sub>ethanol</sub>=0.27 (2); DMSO2+(ethanolwater) X<sub>ethanol</sub>=0.46 (3);DMSO2+(ethanol-water) X<sub>ethanol</sub>=0.75 (4)

Как видно из данных, приведенных в табл. 2, кажущиеся мольные объемы увеличиваются с ростом температуры во всех случаях. В то же время, нет четкой закономерности изменения кажущихся мольных объемов ДМСО2 от состава растворов. Следует отметить, что максимальное количество этанола в смешанном растворителе составило не более 0,75 мольной доли. Для выявления влияния содержания этанола на объемные свойства были оценены парциальные мольные объемы как для бинарного (ДМСО2– $H_2O$ ), так и для трехкомпонентных(ДМСО2–этанол–вода) растворов.

Парциальные мольные объемы при бесконечном разбавлении  $(V_{\phi}^{0})$  получены методом экстраполяции по уравнению (2):

$$V_{\phi} = V_{\phi}^{0} + S_{v}m , \qquad (2)$$

где *S*<sub>v</sub> экспериментально определяемый параметр.

Зависимости предельных кажущихся мольных объемов от температуры представлены на рис. 2. Как видно, значения  $V_{\phi}^{0}$  монотонно повышаются с ростом температуры.

Следует отметить, что значения  $V_{\phi}^{0}$  для ДМСО2 в смешанных растворителях до эквимолярного состава незначительно меняются с ростом температуры, в то же время, парциальные мольные объемы в насыщенных этанолом растворах резко увеличиваются (рис. 2).

Известно, что  $V_{\phi}^{0}$  включает в себя следующие составляющие [13]:

$$V_{\phi}^{0} = (V_{VW} + V_{V}) + (V_{S} + V_{h}), \qquad (3)$$

где  $V_{VW}$  – собственный ван дер Ваальсовый объем молекулы,  $V_V$  – исключенный объем,  $V_S$  – вклад вза-

Кажущиеся мольные объемы растворов ДМСО2+(этанол-вода) в температурном интервале 298,15-323,15 К

Table 2. Apparent molar volumes of DMSO2+(ethanolwater) solutions over the temperature range of 298.15– 323.15K

| т,                        | $V_{\phi}$ (см $^{3}$ /моль) |            |           |          |          |          |  |  |  |
|---------------------------|------------------------------|------------|-----------|----------|----------|----------|--|--|--|
| моль/кг                   | 298,15 K                     | 303,15 K   | 308,15 K  | 313,15 К | 318,15 K | 323,15 К |  |  |  |
|                           |                              | ДМСО2      | 2+(этано  | л–вода)  |          |          |  |  |  |
| Х <sub>этанол</sub> =0,27 |                              |            |           |          |          |          |  |  |  |
| 0,1692                    | 77,215                       | 77,385     | 77,555    | 77,726   | 77,897   | 78,069   |  |  |  |
| 0,2672                    | 74,596                       | 74,749     | 74,902    | 75,056   | 75,209   | 75,364   |  |  |  |
| 0,3494                    | 71,983                       | 72,119     | 72,255    | 72,392   | 72,528   | 72,665   |  |  |  |
| 0,4372                    | 74,225                       | 74,375     | 74,526    | 74,678   | 74,830   | 74,982   |  |  |  |
| 0,5083                    | 75,041                       | 75,197     | 75,354    | 75,511   | 75,669   | 75,826   |  |  |  |
| 0,5978                    | 74,969                       | 75,125     | 75,281    | 75,438   | 75,595   | 75,753   |  |  |  |
| 0,6482                    | 75,106                       | 75,263     | 75,420    | 75,578   | 75,736   | 75,895   |  |  |  |
| 0,7717                    | 75,105                       | 75,262     | 75,420    | 75,578   | 75,736   | 75,895   |  |  |  |
| 0,8726                    | 74,793                       | 74,949     | 75,104    | 75,261   | 75,417   | 75,574   |  |  |  |
| 1,0010                    | 74,911                       | 75,068     | 75,224    | 75,382   | 75,539   | 75,697   |  |  |  |
|                           |                              | ДМСО2      | 2+(этано  | л–вода)  |          |          |  |  |  |
|                           |                              | <i>X</i> . | этанол=0, | 46       |          |          |  |  |  |
| 0,1009                    | 73,037                       | 72,563     | 72,880    | 73,067   | 73,258   | 73,451   |  |  |  |
| 0,1532                    | 74,770                       | 74,626     | 74,919    | 75,128   | 75,340   | 75,648   |  |  |  |
| 0,2005                    | 73,700                       | 73,628     | 73,890    | 74,157   | 74,360   | 74,566   |  |  |  |
| 0,2531                    | 74,890                       | 74,885     | 75,200    | 75,413   | 75,629   | 75,904   |  |  |  |
| 0,2980                    | 74,862                       | 74,890     | 75,189    | 75,447   | 75,664   | 75,884   |  |  |  |
| 0,3374                    | 74,525                       | 74,571     | 74,856    | 75,065   | 75,320   | 75,536   |  |  |  |
| 0,4003                    | 74,791                       | 74,898     | 75,175    | 75,422   | 75,639   | 75,895   |  |  |  |
| 0,4502                    | 74,536                       | 74,681     | 74,918    | 75,252   | 75,405   | 75,655   |  |  |  |
| 0,4959                    | 74,071                       | 74,191     | 74,448    | 74,681   | 74,891   | 75,133   |  |  |  |
| 0,5519                    | 74,521                       | 74,679     | 74,935    | 75,171   | 75,412   | 75,631   |  |  |  |
| 0,5925                    | 74,094                       | 74,273     | 74,476    | 74,659   | 74,893   | 75,131   |  |  |  |
| 0,6466                    | 73,718                       | 73,854     | 72,817    | 73,179   | 73,330   | 73,593   |  |  |  |
| 0,6881                    | 73,201                       | 73,375     | 73,609    | 73,808   | 74,030   | 74,256   |  |  |  |
| 0,7472                    | 74,204                       | 74,408     | 74,631    | 74,878   | 75,109   | 75,345   |  |  |  |
| 0,7574                    | 74,005                       | 74,171     | 74,429    | 74,654   | 74,883   | 75,117   |  |  |  |
| 0,8243                    | 73,524                       | 73,672     | 73,937    | 74,139   | 74,482   | 74,675   |  |  |  |
| ДМСО2+(этанол-вода)       |                              |            |           |          |          |          |  |  |  |
| Х <sub>этанол</sub> =0,75 |                              |            |           |          |          |          |  |  |  |
| 0,1005                    | 85,256                       | 83,33/     | 80,014    | 80,328   | 80,801   | 87,128   |  |  |  |
| 0,1537                    | 81,722                       | 81,985     | 82,351    | 82,624   | 83,002   | 83,388   |  |  |  |
| 0,2004                    | /8,534                       | /8,839     | 79,223    | 79,461   | /9,/80   | 80,105   |  |  |  |
| 0,2456                    | 11,935                       | /8,158     | 78,508    | /8,801   | 79,098   | 79,401   |  |  |  |
| 0,3007                    | 75,578                       | 75,827     | 76,128    | 76,384   | 76,643   | 76,958   |  |  |  |
| 0,3499                    | /5,262                       | /5,500     | 15,185    | /6,029   | /6,36/   | /6,5/4   |  |  |  |
| 0,3956                    | 11,432                       | 11,121     | /8,026    | /8,291   | /8,599   | /8,8/3   |  |  |  |
| 0,4464                    | /6,857                       | //,103     | //,421    | 11,675   | /8,003   | /8,266   |  |  |  |
| 0,5004                    | 76,730                       | 77,003     | 77,278    | 77,559   | 77,874   | 78,132   |  |  |  |
| 0,5483                    | /5,654                       | 75,910     | /6,196    | /6,460   | 76,727   | 76,998   |  |  |  |
| 0,5958                    | 76,427                       | 76,712     | 77,002    | 77,270   | 77,568   | 77,844   |  |  |  |
| 0,6461                    | 74,533                       | 74,911     | 75,223    | 75,516   | 75,814   | 76,091   |  |  |  |
| 0,7044                    | 74,994                       | 75,406     | 75,714    | 75,982   | 76,277   | 76,554   |  |  |  |

Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 7

имодействий растворенное вещество–растворитель, а  $V_h$  – вклад гидрофобной гидратации. По всей вероятности, последнее и определяет большее значение  $V_{\phi}^{0}$  в случае смешанных растворителей этанол– вода с составом  $X_{этанол} = 0,75$ . Наблюдаемые явления связаны с наличием конкуренции межмолекулярных взаимодействий молекул компонентов. В трехкомпонентных растворах парциальные мольные объемы ДМСО2 увеличиваются, т.е. преобладают сильные водородные связи между этанолом и водой. Это подтверждают и данные, приведенные в табл. 3.

В табл. З приведены значения парциального мольного объема переноса  $\Delta V_{tr}^{0}$  ДМСО2 из воды в водный раствор этанола, полученные по соотношению:

$$\Delta V_{tr}^{0} = V_{\phi}^{0} (\square MCO2 + (\square Boda)) - V_{\phi}^{0} (\square MCO2 + Boda)$$
(4)

Величины  $\Delta V_{tr}^{0}$  могут быть интерпретированы на основе модели Герни [14] о перекрывании сольватных сфер растворенных веществ, при их растворении в воде, как показано в работах [15-17]. Положительные значения  $\Delta V_{tr}^{0}$ , полученные для системы ДМСО2+(этанол–вода), содержащей 0,75 м.д. этанола, свидетельствуют о том, что увеличение содержания этанола в трехкомпонентном растворе сопровождается преобладанием вклада от образования водородных связей и взаимодействия гидрофильных групп молекул ДМСО2 и этанола по сравнению со вкладом от гидрофобного взаимодействия между их неполярными (СН<sub>3</sub>-, -СН<sub>2</sub>-) группами в системах, содержащих 0,27 и 0,46 м.д. этанола, что подтверждают полученные для них отрицательные значения  $\Delta V_{tr}^{0}$  (табл. 3).



Рис. 2. Парциальные мольные объемы растворов ДМСО2 при бесконечном разбавлении в температурном интервале 298,15К-323,15К: ДМСО2+вода (1); ДМСО2+(этанол-вода)

Х<sub>этанол</sub>=0,27 (2); ДМСО2+(этанол-вода) Х<sub>этанол</sub>=0,46 (3); ДМСО2+(этанол-вода) Х<sub>этанол</sub>=0,46 (3);

Fig. 2. Partial molar volumes of solutions at infinite dilution over the temperature range of 298.15–323.15 K: DMSO2+water (1), DMSO2+(ethanol-water) X<sub>ethanol</sub>=0.27 (2), DMSO2+(ethanolwater) X<sub>ethanol</sub>=0.46 (3), DMSO2+(ethanol-water) <sub>Xethanol</sub>=0.75 (4)

Таблица З

Парциальные мольные объемы ДМСО2 при бесконечном разбавлении и их значения при переносе из воды в смеси (этанол-вода) в температурном интервале 298,15-323,15К

|        | $V_{\phi}^{0}$ (см <sup>3</sup> моль <sup>-1</sup> ) |                        |                                 |                    | $\Delta V_{tr}^0$ (см <sup>3</sup> моль <sup>-1</sup> ) |                                 |                                 |  |
|--------|------------------------------------------------------|------------------------|---------------------------------|--------------------|---------------------------------------------------------|---------------------------------|---------------------------------|--|
| Т, К   | Вода                                                 | Этанол-вода            | Этанол-вода                     | Этанол-вода        | Этанол-вода                                             | Этанол-вода                     | Этанол-вода                     |  |
|        | [7]                                                  | $X_{ m этанол} = 0,27$ | <i>X<sub>этанол</sub></i> =0,46 | $X_{3 танол}=0,75$ | $X_{3 танол}=0,27$                                      | <i>X<sub>этанол</sub></i> =0,46 | <i>X<sub>этанол</sub></i> =0,75 |  |
| 298,15 | 74,17                                                | 74,87                  | 74,45                           | 83,54              | 0,70                                                    | 0,28                            | 9,37                            |  |
| 303,15 | 74,84                                                | 75,02                  | 74,36                           | 83,79              | 0,18                                                    | -0,48                           | 8,95                            |  |
| 308,15 | 75,45                                                | 75,18                  | 74,66                           | 84,27              | -0,27                                                   | -0,79                           | 8,82                            |  |
| 313,15 | 76,09                                                | 75,33                  | 74,91                           | 84,46              | -0,76                                                   | -1,18                           | 8,37                            |  |
| 318,15 | 76,90                                                | 75,49                  | 75,09                           | 84,93              | -1,41                                                   | -1,81                           | 8,03                            |  |
| 323,15 | 77,50                                                | 75,65                  | 75,35                           | 85,27              | -1,85                                                   | -2,15                           | 7,77                            |  |

 Table 3. Partial molar volumes of DMSO2 at infinite dilution and their transfer volumes from water to ethanol-water mixtures over the temperature range of 298.15–323.15 K

## выводы

На основе экспериментальных значений плотности растворов ДМСО2 в смешанном растворителе этанол-вода при изменении его состава от 0,27 до 0,75 м.д. этанола рассчитаны кажущиеся мольные объемы и их предельные значения в интервале температур 298,15-323,15 К. Установлено, что наличие этанола в больших количествах приводит к увеличению кажущихся мольных объемов ДМСО2. Определены значения парциального мольного объема переноса  $\Delta V_{tr}^{0}$  ДМСО2 из воды в водный раствор этанола. Показано, что положительные значения  $\Delta V_{tr}^{0}$  в случае трехкомпонентной системы, содержащей 0,75 м.д. этанола, обусловлены доминированием гидрофильных взаимодействий и образованием водородных связей между растворенным веществом и смешанным растворителем. При меньшей концентрации (0,27 и 0,46 м.д.) этанола в растворе наблюдаются отрицательные зна-

чения  $\Delta V_{tr}^{0}$ , что может быть связано с преобладанием гидрофобных взаимодействий в исследуемых растворах.

### ЛИТЕРАТУРА

- 1. **Herschler R.J.** Methylsulfonylmethane and methods of use. Pat. 4. US.1981. N 296. P. 130.
- Jacob S.W., Lawrence R.M., Zucker M. The Miracle of MSM. The Natural Solution for Pain. G. P. New York: Putnam's Sons. 1999. P. 250.
- Hucker H.B., Miller J.K., Hochberg A., Brobyn R.D., Riordan F.H., Calesnick B. Studies on the adsorption, excretion and metabolism of dimethylsulfoxide (DMSO) in man. J. Pharmacol. Exp. Ther. 1967. V. 155. P. 309-317.
- De Bruyn W.J., Shorter J.A., Davidovits P., Worsnop D.R., Zahniser M.S., Kolb C.E., Geophys J. Uptake of gaz phase sulfor species methanesulfonic acid. Dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces. J. Geophys. Res. 1994. V. 99. P. 16927-16932. DOI: 10.1029/94JD00684.
- Borodina E., Kelly D.P., Rainey F.A., Ward-Rainey N.L., Wood A.P. Dimethylsulfone as a growth substrate for novel methyltrophic species of Hyphomicrobium and Arthrobacter. *Arch. Microbiol.* 2000. V. 173. P. 425-437. DOI: 10.1007/s002030000165.
- Barnes I., Hjorth J., Mihalopoulos N. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. *Chem. Rev.* 2006. V. 106. P. 940-975. DOI: 10.1021/cr020529+.
- Маркарян Ш.А., Азнаурян М.Г., Казоян Е.А. Физикохимические свойства водных растворов диметил- и диэтилсульфонов. *Журн. Физ. Химии.* 2011. Т. 85. № 12. С. 2291-2294.
- Ghazoyan H.H., Markarian S.A. Densities and Thermochemical Properties of Dimethylsulfone in Dimethylsulfoxide and Dimethylsulfoxide/Water. *J. Mol. Liq.* 2013. V. 183. P. 85-88. DOI: 10.1016/j.molliq.2013.04.010.
- Givan A., Grothe H., Loewenschuss A., Nielsen C.J. Infrared spectra and ab initio calculations of matrix isolated dimethyl sulfone and its water complex. *Phys. Chem. Chem. Phys.* 2002. V. 4. P. 255–263. DOI: 10.1039/B107801C.
- Costigan M.J., Hodges L.J., Marsh K.N., Stokes R.H., Tuxford C.W. The isothermal displacement calorimeter: Design modifications for measuring exothermic enthalpies of mixing. *Australian J. Chem.* 1980. V. 33. N 10. P. 2103– 2119. DOI:10.1071/CH9802103.
- Nose A., Hojo M. Hydrogen bonding of water–ethanol in alcoholic beverages. *J. Biosci. Bioeng.* 2006. V. 102. P. 269– 280. DOI: 10.1263/jbb.102.269.
- D'Aprano A., Donato I.D., Goffedi M., Liveri V.T. Volumetric and transport properties of aerosol-OT reversed micelles containing light and heavy water. J. Sol. Chem. 1992. V. 21. P. 323-331. DOI: 10.1007/BF00647855.
- Kumar A., Singh M., Gupta K.C. An estimation of hydrophilic and hydrophobic interaction of aqueous urea, methylurea, dimethylurea and tetramethylurea from density and apparent molal volume at 30.0°C. *Phys. Chem. Liq.* 2010. V. 48. N 1. P. 1-6. DOI: 10.1080/00319100701785135.
- 14. **Gurney R.W.** Ionic processes in solution. New York: McGraw Hill. 1953. 285 p.

Исследование выполнено при финансовой поддержке ГКН МОН РА в рамках научного проекта № SCS15T-1D005.

### REFERENCES

- 1. **Herschler R.J.** Methylsulfonylmethane and methods of use. Pat. 4. US.1981. N 296. P. 130.
- 2. Jacob S.W., Lawrence R.M., Zucker M. The Miracle of MSM. The Natural Solution for Pain. G. P. New York: Putnam's Sons. 1999. P. 250.
- Hucker H.B., Miller J.K., Hochberg A., Brobyn R.D., Riordan F.H., Calesnick B. Studies on the adsorption, excretion and metabolism of dimethylsulfoxide (DMSO) in man. J. Pharmacol. Exp. Ther. 1967. V. 155. P. 309-317.
- De Bruyn W.J., Shorter J.A., Davidovits P., Worsnop D.R., Zahniser M.S., Kolb C.E., Geophys J. Uptake of gaz phase sulfor species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces. J. Geophys. Res. 1994. V. 99. P. 16927-16932. DOI: 10.1029/94JD00684.
- Borodina E., Kelly D.P., Rainey F.A., Ward-Rainey N.L., Wood A.P. Dimethylsulfone as a growth substrate for novel methyltrophic species of Hyphomicrobium and Arthrobacter. *Arch. Microbiol.* 2000. V. 173. P. 425-437. DOI: 10.1007/s002030000165.
- Barnes I., Hjorth J., Mihalopoulos N. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. *Chem. Rev.* 2006. V. 106. P. 940-975. DOI: 10.1021/cr020529+.
- Markaryan S.A., Aznauryan M.G., Kazoyan E.A. Physicochemical Properties of Aqueous Solutions of Dimethyland Diethylsulfones. *Russ. J. Phys. Chem.* A. 2011. V. 85. N 12. P. 2138–2141. DOI: 10.1134/S0036024411120211.
- Ghazoyan H.H., Markarian S.A. Densities and Thermochemical Properties of Dimethylsulfone in Dimethylsulfoxide and Dimethylsulfoxide/Water. *J. Mol. Liq.* 2013. V. 183. P. 85-88. DOI: 10.1016/j.molliq.2013.04.010.
- Givan A., Grothe H., Loewenschuss A., Nielsen C.J. Infrared spectra and ab initio calculations of matrix isolated dimethyl sulfone and its water complex. *Phys. Chem. Chem. Phys.* 2002. V. 4. P. 255–263. DOI: 10.1039/B107801C.
- Costigan M.J., Hodges L.J., Marsh K.N., Stokes R.H., Tuxford C.W. The isothermal displacement calorimeter: Design modifications for measuring exothermic enthalpies of mixing. *Australian J. Chem.* 1980. V. 33. N 10. P. 2103– 2119. DOI: 10.1071/CH9802103.
- Nose A., Hojo M. Hydrogen bonding of water–ethanol in alcoholic beverages. J. Biosci. Bioeng. 2006. V. 102. P. 269– 280. DOI: 10.1263/jbb.102.269.
- D'Aprano A., Donato I.D., Goffedi M., Liveri V.T. Volumetric and transport properties of aerosol-OT reversed micelles containing light and heavy water. J. Sol. Chem. 1992. V. 21. P. 323-331. DOI: 10.1007/BF00647855.
- Kumar A., Singh M., Gupta K.C. An estimation of hydrophilic and hydrophobic interaction of aqueous urea, methylurea, dimethylurea and tetramethylurea from density and apparent molal volume at 30.0°C. *Phys. Chem. Liq.* 2010. V. 48. N 1. P. 1-6. DOI: 10.1080/00319100701785135.
- 14. **Gurney R.W.** Ionic processes in solution. New York: McGraw Hill. 1953. 285 p.

Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 7

- Lepori L., Gianni P. Partial molar volumes of ionic and nonionic organic solutes in water: a simple additivity scheme based on the intrinsic volume approach. *J. Solution Chem.* 2000. V. 29. P. 405-447. DOI: 10.1023/A:1005150616038.
- Tyunina E.Yu., Badelin V.G. Interaction of L-phenylalanine with nicotinic acid in buffer solution by volumetric measurements at various temperatures. J. Solution Chem. 2016. V. 45. P. 475-482. DOI: 10.1007/s10953-016-0451-4.
- 17. Zielenkiewicz W., Pietraszkiewicz O., Wszelaka-Rylic M., Pietraszkiewicz M., Royx-Desgranges G., Roux A.H., Grolier J.-P.E. Molecular interactions of macrocycles with dipeptides in aqueous solutions. Partial molar volumes and heat capacities of transfer of a chiral 18-crown-6 and calyx[4]resorcinarene derivative from water to aqueous dipeptide solutions at 250C. J. Solution Chem. 1998. V. 27. P. 121-134. DOI: 10.1023/A:1022653222581.
- Lepori L., Gianni P. Partial molar volumes of ionic and nonionic organic solutes in water: a simple additivity scheme based on the intrinsic volume approach. *J. Solution Chem.* 2000. V. 29. P. 405-447. DOI: 10.1023/A:1005150616038.
- Tyunina E.Yu., Badelin V.G. Interaction of L-phenylalanine with nicotinic acid in buffer solution by volumetric measurements at various temperatures. J. Solution Chem. 2016. V. 45. P. 475-482. DOI: 10.1007/s10953-016-0451-4.
- Zielenkiewicz W., Pietraszkiewicz O., Wszelaka-Rylic M., Pietraszkiewicz M., Royx-Desgranges G., Roux A.H., Grolier J.-P.E. Molecular interactions of macrocycles with dipeptides in aqueous solutions. Partial molar volumes and heat capacities of transfer of a chiral 18-crown-6 and calyx[4]resorcinarene derivative from water to aqueous dipeptide solutions at 250C. J. Solution Chem. 1998. V. 27. P. 121-134. DOI: 10.1023/A:1022653222581.

Поступила в редакцию 16.01.2017 Принята к опубликованию 30.03.2017

*Received 16.01.2017 Accepted 30.03.2017*