Для цитирования:

Егоров Г.И., Макаров Д.М., Колкер А.М. Влияние давления на избыточные термодинамические характеристики смеси вода + формамид. *Изв. вузов. Химия и хим. технология.* 2016. Т. 59. Вып. 6. С. 28-36. **For citation:**

Egorov G.I., Makarov D.M., Kolker A.M. Effect of pressure on excess thermodynamic characteristics of water + formamide mixture. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2016. V. 59. N 6. P. 28-36.

УДК 541.1+536.412+531.756

Г.И. Егоров, Д.М. Макаров, А.М. Колкер

Геннадий Ильич Егоров (🖾), Дмитрий Михайлович Макаров, Аркадий Михайлович Колкер

Лаборатория «Структура и динамика молекулярных и ион-молекулярных растворов», Институт химии растворов им. Г.А. Крестова РАН, ул. Академическая, 1, Иваново, 153045, Российская Федерация E-mail: gie@isc-ras.ru (⊠), dmm@isc-ras.ru

ВЛИЯНИЕ ДАВЛЕНИЯ НА ИЗБЫТОЧНЫЕ ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ СМЕСИ ВОДА + ФОРМАМИД

Рассчитаны изменения в избыточной мольной энергии Гиббса $\Delta_{P0\to P}G_m^{\ E}$, избыточной мольной энтропии $\Delta_{P0\to P}S_m^{\ E}$ и избыточной мольной энтальпии $\Delta_{P0\to P}H_m^{\ E}$ в смеси вода (1) + формамид (2) из-за повышения давления от атмосферного до 100 МПа в интервале температур 288,15-323,15 К Показано, что зависимости $\Delta_{P0\to P}G_m^{\ E}$, $\Delta_{P0\to P}S_m^{\ E}$ и $\Delta_{P0\to P}H_m^{\ E}$ от мольной доли формамида характеризуются наличием экстремума.

Ключевые слова: вода, формамид, смеси неэлектролитов, высокое давление, избыточные термодинамические характеристики

G.I. Egorov, D.M. Makarov, A.M. Kolker

Gennadiy I. Egorov (⊠), Dmitriy M. Makarov, Arkadiy M. Kolker Laboratory of Structure and Dynamics of Molecular and Ion-Molecular Solutions, G.A. Krestov Institute o f Solution Chemistry of RAS, Akademicheskaya str., 1, Ivanovo, 153045, Russia E-mail: gie@isc-ras.ru (⊠), dmm@isc-ras.ru, amk@isc-ras.ru

EFFECT OF PRESSURE ON EXCESS THERMODYNAMIC CHARACTERISTICS OF WATER + FORMAMIDE MIXTURE

Using the experimental data on the densities at atmospheric pressure and compressibility coefficients, $k=(V_o-V)/V_o$, of water + FA mixture the changes in the following thermodynamic parameters were calculated under the pressure increase up to 100 MPa within the temperature range from 288.15 to 323.15 K: excess molar Gibbs energy, $\Delta_{Po\to P}G_m^E$, excess molar entropy $\Delta_{Po\to P}H_m^E$. It was established that $\Delta_{Po\to P}G_m^E$ values were negative over the whole concentration range and minima appeared on $\Delta_{Po\to P}G_m^E = f(x_2)$ functions at $x_2\approx 0.33$. The pressure growth up to 100 MPa resulted in $\Delta_{Po\to P}G_m^E$ absolute values increase within entire con-

centration and temperature intervals. The changes in entropy component, $-(\Delta_{Po\to P}TS_m^E)$, of $\Delta_{Po\to P}G_m^E$ values were almost canceled by the enthalpy component changes. Minimal values of $\Delta_{Po\to P}S_m^E$ corresponded to $x_2 \approx 0.33$, exactly at that composition $2H_2O$ -FA associate formed. The isobaric temperature lowering caused the structure ordering also at $x_2 \approx 0.33$. The pressure growth promoted the increasing in exothermicity of the mixing enthalpies, H_m^E , of water and formamide. The changes in H_m^E value under the mixture compression are indicative of the larger exothermal contribution from new H-bonds formation as compared with the endothermic contribution from the decreasing in the total amount of hydrogen bonds. The temperature lowering decreases $\Delta_{Po\to P}H_m^E$ values as well; maximal isotherms dispersion is observed at concentrations corresponding to maximal content of 2:1 or 1:1 associates of water and FA.

Key words: water, formamide, non-electrolytes mixtures, high pressure, excess thermodynamic properties

ВВЕДЕНИЕ

В ИХР РАН исследования РVTХ-свойств растворов были начаты по инициативе Г.А. Крестова. В 1985 г. им было предложено добавить в качестве переменной в исследовании жидкофазных систем, наряду с температурой и составом, и давление. На тот момент в ИХР РАН для подобных исследований полностью отсутствовала приборная и методологическая база, а изучениями растворов при высоком давлении в СССР в то время занимались всего три научные группы. За прошедшее время в лаборатории были подготовлены кадры, сконструированы и собраны экспериментальные установки, отработана методика измерения объемных свойств и исследованы PVTX свойства более 15 бинарных жидких систем. В данной статье предлагаются свежие данные о влиянии давления на избыточные термодинамические функции смеси вода + формамид.

Как известно, зависимости объема жидкой смеси от состава, температуры и давления представляют информацию об особенностях структуры и межмолекулярных взаимодействий ее компонентов. При образовании бинарной смеси происходят изменения во взаимодействии молекул, проявляются различия в упаковке компонентов. При наличии хотя бы у одного растворителя развитой сетки водородных связей, свойства смеси изменяются по-особенному. К жидкостям с развитой пространственной сеткой водородных связей наряду с водой относится и формамид [1-18].

Формамид (ФА, метанамид) широко применяется в химической промышленности в качестве исходного сырья при синтезе многих технологически важных веществ. ФА является сильно ассоциированной жидкостью. Молекула формамида потенциально способна образовывать четыре, как у воды, хотя и неравноценные (три активных центра (два протона $-NH_2$ группы и кислород карбонильной группы >C=O) водородные связи, и его система H-связей имеет трехмерную структуру, содержащую как цепочки H-связей, так и замкнутые циклы, среди которых преобладают димеры [1-18]. В литературе нет единого мнения, что является преобладающим основным структурным элементом в жидком ΦA : цепочечные ассоциаты или циклические димеры. Считается, что формамид на 95% состоит из молекул, ассоциированных в шестиугольные замкнутые циклы, в которых H-связи образуются только через атомы водорода, находящихся в *транс*-положении [8, 12, 14-17].

С использованием измеренных плотностей при атмосферном давлении и коэффициентов сжимаемости $k = (V_o - V)/V_o$ смесей вода + ФА при 278,15-323,15 К в интервале давлений 0,1-100 МПа рассчитаны избыточные мольные объемы V_m^{E} , изменения избыточных мольных термодинамических величин: энергии Гиббса $\Delta_{P0\to P}G_m^{E}$, энтропии $\Delta_{P0\to P}S_m^{E}$ и энтальпий $\Delta_{P0\to P}H_m^{E}$. Величины $\Delta_{P0\to P}Y_m^{E}$ (Y = G,S,H) с индексами " $_P$ " и " $_{Po}$ " относятся, соответственно, к повышенному давлению P и атмосферному P_o (0,101 МПа).

Измерения при 278,15 К выше 25 МПа, вследствие перехода смесей, богатых формамидом в твердую фазу, были выполнены не во всем интервале параметров состояния.

Избыточные мольные объемы $V_{\rm m}^{\rm E}$ смеси,

$$V_m^E = V_m - x_1 V_1^o - x_2 V_2^o, \qquad (1)$$

где $V_{\rm m}$ – мольный объем смеси, V_1^{0} , x_1 , и V_2^{0} , x_2 – мольный объем чистых компонентов и их мольные доли (индекс 1 относится к воде, индекс 2 – к формамиду), были рассчитаны непосредственно из экспериментальных данных:

$$V_m^E = x_1 M_1 (1/\rho - 1/\rho_1) + x_2 M_2 (1/\rho - 1/\rho_2)$$
(2)

где M_1 , ρ_1 , и M_2 , ρ_2 – молярные массы, плотности воды и формамида, соответственно, ρ – плотность

смеси. Погрешность в определении избыточных мольных объемов при атмосферном давлении составила не более 0,01 см³·моль⁻¹, при повышении давления, соответственно, погрешность возрастала до 0,03 см³·моль⁻¹. Величины V_m^E были описаны уравнением

Редлиха-Кистера [18].

$$V_m^E = x_2(1-x_2) \sum_{i=0}^{i=6} A_i (1-2x_2)^i$$
(3)

Оптимальная степень *n* уравнения (3) определялась стандартным отклонением (о), которое рассчитывалось как:

$$\sigma = \left[V_{exp}^{E} - V_{cal}^{E} \right]^{2} / (N - (n+1))^{\frac{1}{2}}, \qquad (4)$$

где N – общее число экспериментальных точек, а (*n*+1) – число используемых коэффициентов (*A_i*) уравнения (3). Рассчитанные коэффициенты (A_i) и среднеквадратичные отклонения (о) для каждой температуры, приведены в таблице.

Таблица 1

- $ -$	Коэффициенты A _i (см ³ ·моль ⁻¹) уравнения (3) и стандар)тные отклонения $\sigma\left(V_{m}^{E} ight)$ ((см ³ ·моль ⁻¹)
<i>Table 1</i> . The coefficients A_i (cm ³ ·mol ⁻¹) in equation (3) and V_m^{-1} standard deviations, σ (V_m^{-1}) (cm ³ ·mol ⁻¹)	<i>Table 1</i> . The coefficients A_i (cm ³ ·n	nol ⁻¹) in equation (3) and V_r	m^{E} standard deviations, σ (V_{I}	$\binom{E}{n}$ (cm ³ ·mol ⁻¹)

	Т, К	Р, МПа					
A_i		0,10	10,0	25,0	50,0	75,0	100,0
	278,15	-0,8141	-0,7705	-0,7179	-	-	-
	288,15	-0,6543	-0,6240	-0,5811	-0,5134	-0,4649	-0,4282
A_0	298,15	-0,5231	-0,4992	-0,4654	-0,4135	-0,3707	-0,3299
	308,15	-0,4171	-0,3978	-0,3700	-0,3252	-0,2885	-0,2550
	323,15	-0,2791	-0,2637	-0,2449	-0,2186	-0,1943	-0,1665
A ₁	278,15	-0,6405	-0,6182	-0,5592	-	-	-
	288,15	-0,4981	-0,4756	-0,4174	-0,3788	-0,3342	-0,2972
	298,15	-0,4153	-0,4016	-0,3640	-0,3241	-0,2980	-0,2641
	308,15	-0,3487	-0,3327	-0,3045	-0,2836	-0,2454	-0,2039
	323,15	-0,3103	-0,2952	-0,2650	-0,2455	-0,2166	-0,1798
	278,15	-0,2899	-0,2945	-0,2514	-	-	-
	288,15	-0,2238	-0,2006	-0,1683	-0,1604	-0,1451	-0,1041
A_2	298,15	-0,1924	-0,1899	-0,1469	-0,1516	-0,0789	-0,0139
_	308,15	-0,1678	-0,1462	-0,1351	-0,1013	-0,0923	-0,0801
	323,15	-0,2646	-0,2519	-0,1967	-0,1508	-0,1852	-0,0896
A_3	278,15	-0,0119	0,0617	0,0021	-	-	-
	288,15	-0,1095	-0,1036	-0,1983	-0,1838	-0,1365	-0.0877
	298,15	-0,0611	-0,0171	-0,0545	-0,0199	0,0260	-0,0254
	308,15	-0,0415	-0,0364	-0,0548	0,0468	0,0372	-0,0552
	323,15	0,1808	0,1628	0,0927	0,1285	0,1310	0,0517
A_4	278,15	-0,2188	-0,1074	-0,1159	-	-	-
	288,15	-0,1372	-0,1322	-0,1872	-0,1372	-0,0755	-0,1116
	298,15	-0,0237	0,0340	-0,0465	0,0764	-0,1155	-0,2726
	308,15	0,0311	0,0030	0,0203	-0,0390	0,0246	0,0568
	323,15	0,5763	0,5561	0,4033	0,3273	0,5124	0,2643
A5	278,15	-0,3441	-0,4111	-0,3002	-	-	-
	288,15	-0,1142	-0,1043	0,0135	0,0280	-0,0131	-0,0286
	298,15	-0,1026	-0,1337	-0,0832	-0,1170	-0,1361	-0,0247
	308,15	-0,0638	-0,0604	-0,0193	-0,1134	-0,0983	0,0388
	323,15	-0,2472	-0,2220	-0,1141	-0,1239	-0,1026	0,0155
A_6	278,15	0,0373	-0,0622	-0,0280	-	-	-
	288,15	0,0429	0,0366	0,1063	0,0963	0,0478	0,0955
	298,15	0,0063	-0,0407	0,0381	-0,0770	0,1070	0,2865
	308,15	-0,0113	0,0164	0,0199	0,0755	0,0189	0,0233
	323,15	-0,4324	-0,4087	-0,2466	-0,1720	-0,2973	-0,0723
σV^E , см ³ ·моль ⁻¹	278,15	0,001	0,002	0,001	-	-	-
	288,15	0,001	0,002	0,001	0,001	0,001	0,001
	298,15	0,001	0,001	0,001	0,001	0,002	0,001
	308,15	0,001	0,001	0,001	0,001	0,002	0,002
	323,15	0,002	0,002	0,001	0,001	0,001	0,001

Избыточные мольные объемы $V_m^{\ E}$ использовались для расчета изменений избыточных мольных энергий Гиббса $\Delta_{P0\to P}G_m^{\ E}$, избыточных мольных энтропий $\Delta_{P0\to P}S_m^{\ E}$, избыточных мольных энтропий $\Delta_{P0\to P}H_m^{\ E}$ [19-22]. Для вычисления величин $\Delta_{P0\to P}G_m^{\ E}$ значе-

Для вычисления величин $\Delta_{P0\to P}G_m^{E}$ значения избыточных мольных объемов V_m^{E} каждого состава были обработаны полиномом второй степени по давлению.

$$\Delta_{P_{o} \to P} G_{m}^{E} = G_{m(P)}^{E} - G_{m(P_{o})}^{E} = \int_{P_{o}}^{P} V_{m}^{E} dP$$
(5)

Изменения избыточных мольных энтропий $\Delta_{P0\to P}S_m^{\ E}$ находили обработкой величин $\Delta_{P0\to P}G_m^{\ E}$ полиномом второй степени по температуре.

$$\Delta_{P_o \to P} S_m^E = S_{m(P)}^E - S_{m(P_o)}^E = -(\partial \Delta_{P_o \to P} G_m^E / \partial T)_{P,x} = = -\int_{P_o}^P (\partial V_m^E / \partial T)_{P,x} dP.$$
(6)

Изменения энтальпии смешения из-за увеличения давления $\Delta_{P0\to P}H_m^E$ рассчитывали как

$$\Delta_{P_{o} \to P} H_{m}^{E} = H_{m(P)}^{E} - H_{m(P_{o})}^{E} = (G_{m(P)}^{E} - G_{m(P_{o})}^{E}) + T(S_{m(P)}^{E} - S_{m(P_{o})}^{E}) = \int_{P_{o}}^{P} \Psi_{m(P)}^{E} - T(\partial V_{m}^{E} / \partial T)_{P,x} \underline{d}P$$
(7)

Максимальная погрешность в определении $\Delta_{P0\to P}G_m^{\ E}$ не превышала ±2%, погрешность $\Delta_{P0\to P}S_m^{\ E}$ и $\Delta_{P0\to P}H_m^{\ E}$ энтальпий – не более 10%.

Ранее проведенные исследования структуры смеси вода + формамид показали [23-26], что структура формамида доминирует при формировании пространственного расположения молекул смеси. Тетраэдрический порядок в воде с ростом концентрации формамида в смеси разрушается, хотя структура воды в пределах первой координационной оболочки сохраняется и даже немного увеличивается. Время жизни водородной связи между водой и формамидом увеличивается с ростом концентрации формамида, а время жизни водородных связей воды также показывает усиление структуры воды в пределах первой координационной оболочки [23]. Кроме того, в смеси вода + формамид наблюдается подмена молекул формамида молекулами воды в Н-связях при формировании общей сетки водородных связей. Среднее число Н-связей вода-вода, и количество Н-связей, приходящее на одну молекулу воды, уменьшается с ростом концентрации ФА, что свидетельствует о разрушении сетки Н-связей воды за пределами ближайшего окружения. Авторы [23] на основе анализа распространения Н-связей в смеси вода + формамид предполагают, что, кроме димера Н₂О-ФА, в смеси во всем диапазоне концентраций имеются ассоциаты 2H₂O-ФА, формирующиеся в смесях, богатых водой, и H₂O-2ФА, присутствующие в большом количестве в смесях, богатых формамидом. Также в смеси по мере изменения соотношения компонентов меняется и число Н-связей, образуемых молекулой формамида. Например, при соотношении компонентов смеси 1:1 молекулы ФА формируют только три водородные связи с соседними молекулами воды [27].

Рис. 1. Избыточные мольные объемы, V_m^E , смеси вода + формамид в зависимости от мольной доли x_2 : а – при 298,15 К и следующих давлениях: (1 – 0,10 МПа, 2 – 10 МПа, 3 – 25 МПа, 4 – 50 МПа, 5 – 75 МПа, 6, 7– 100 МПа (1-6 – наши данные, 7 –данные [34], (пунктирная линия); 6 – при 100 МПа и следующих температурах (1 – 288,15 К, 2 – 298,15 К, 3 – 308,15 К, 4 – 323,15 К)

Fig. 1. Dependences of the excess molar volumes, V_m^E , of water + formamide mixture on x_2 : a – at 298.15 K and various pressures: (1 – 0.10 MPa, 2 – 10 MPa, 3 – 25 MPa, 4 – 50 MPa, 5 – 75 MPa, 6, 7 – 100 Pa; (1-6 – our data, 7 – data from ref. [34] (dash-dot line); 6 – at 100 MPa and various temperatures: (1 – 288.15 K, 2 – 298.15 K, 3 – 308.15 K, 4 – 323.15 K)

При атмосферном давлении избыточные термодинамические величины смеси вода + ΦA экспериментально исследовались, были измерены избыточный мольный объем V_m^E [28-32] и избыточная мольная энтальпия H_m^E [33]. Было показано, что при атмосферном давлении концентрационные зависимости V_m^E и H_m^E смеси вода + ΦA характеризуются отрицательными отклонениями.

При давлениях выше атмосферного ранее смеси вода + формамид были исследованы только при одной температуре 298,15 К и давлениях 20, 50, 100, 150 МПа [34]. Были рассчитаны величины V_m^E и $\Delta_{P0\to P}G_m^E$ при каждой изобаре, и полученные результаты представлены в виде уравнения Редлиха-Кистера. Сравнение наших результатов и данных работы [34], представленное на рис. 1 и 2, свидетельствует об удовлетворительном их согласии (максимальное отклонение составляет 0,013 см³·моль⁻¹), а в области составов, богатых водой – очень хорошее.

Как видно из рис. 1 (здесь и далее графики для сравнения приведены в одинаковом масштабе шкал), величины избыточных мольных объемов отрицательны, что свидетельствует о более плотной упаковке образующейся смеси, т.е. формирование смеси вода + формамид сопровождается либо более сильными взаимодействиями между молекулами компонентов смеси, по сравнению с таковым взаимодействием в индивидуальных растворителях, либо при образовании смеси формируется большее количество межмолекулярных связей. Зависимость $V_m^E = f(x_2)$ характеризуется наличием минимума при $x_2 \approx 0,3$. Величина экстремума уменьшается с ростом как температуры, так и давления.

Увеличение температуры, как видно из рис. 1б, приводит к образованию менее упакованной системы. Как известно из фундаментальных закономерностей, рост температуры способствует увеличению подвижности молекул и, следовательно, снятию стерических препятствий для образования дополнительных межмолекулярных связей между водой и формамидом в смеси. Кроме того, рост температуры приводит к оптимизации возможных внутримолекулярных связей в самом ФА. Однако, рост давления, как можно видеть, также приводящий к уменьшению величины экстремума, не вызывает образования менее упакованной системы и не поддерживает тенденцию разупорядочивания системы. Такое изменение является следствием различия ассоциативных процессов в смеси и ассоциативных процессов в чистых компонентах при повышении давления. Как видно из рис. 1, рост температуры и давления в пределах изученных параметров не приводят к заметному смещению минимума на зависимости $V_{\rm m}^{\rm E} = f(x_2)$, смещения находятся в пределах погрешности.

Рис. 2. а – Изменения в избыточной мольной энергии Гиббса, $\Delta_{Po\to P}G_m^E$ в смеси вода + формамид от мольной доли x₂ при 298,15 К вследствие повышения давления от 0,10 МПа до следующих значений: 1 – 10 МПа, 2 – 25 МПа, 3 – 50 МПа, 4 – 75 МПа, 5, 6–100 МПа (1-5 – наши данные, 6 – данные [34], (пунктирная линия); 6 – диаграмма взаимного расположения концентрационных избыточных функций $\Delta_{Po\to P}G_m^E$, $T(\Delta_{Po\to P}S_m^E)$, и $\Delta_{Po\to P}H_m^E$ в смеси вода + формамид при

298,15 К и 100 МПа

Fig. 2. a – Changes in the excess molar Gibbs energy $\Delta_{Po \rightarrow P} G_m^E$ of water + formamide mixture on FA mole fraction, x_2 , at 298.15 K and under the pressure rising from 0.10 MPa to the following magnitudes: 1 – 10 MPa, 2 – 25 MPa, 3 – 50 MPa, 4 – 75 MPa, 5 – 100 MPa, (1-5 – our data, 6 – data from ref. [34] (dash-dot line); 6 – Diagram of the relative position of the concentration dependences of the excess properties ($\Delta_{Po \rightarrow P} G_m^E$, -($\Delta_{Po \rightarrow P} T_s^E^E$), $\mu \Delta_{Po \rightarrow P} H_m^E$) of water + formamide mixture at 298.15 K and 100 MPa

Как видно из рис. 2а, величины $\Delta_{P0\to P}G_m^E$ являются отрицательными во всей области составов, а зависимости $\Delta_{P0\to P}G_m^E = f(x_2)$ характеризуются наличием минимума в области $x_2\approx0,33$. Рост давления до 100 МПа приводит к увеличению абсолютных величин $\Delta_{P0\to P}G_m^E$ во всей области составов и при всех температурах. Как следует из рис. 26, изменения энтропийной составляющей - $(\Delta_{P0\to P}TS_m^E)$ в $\Delta_{P0\to P}G_m^E$ почти полностью компенсируется соответствующими изменениями энтальпийной составляющей.

Рост давления увеличивает степень упорядоченности в любой системе, и в первую очередь структурообразование будет происходить при тех

Рис. 3. Изменения в избыточной мольной энтропии $\Delta_{Po \rightarrow P} S_m^{-E} B$ смеси вода + формамид от мольной доли x_2 : а – при 298,15 К от повышения давления с 0,10 МПа до следующих значений: (1 – 10 МПа, 2 – 25 МПа, 3 – 50 МПа, 4 – 75 МПа, 5 – 100 МПа); 6 – от повышения давления от 0,10 МПа до 100 МПа

при следующих температурах (1 – 288,15 К, 2 – 298,15 К, 3 – 308,15 К, 4 – 323,15 К)

Fig. 3. Changes in the excess molar entropy, $\Delta_{Po \rightarrow P} S_m^E$, of water + formamide mixture on FA mole fraction, x₂: a – at 278.15 K and under the pressure rising from 0.101 MPa to the following magnitudes: 1 – 10 MPa, 2 – 25 MPa, 3 – 50 MPa, 4 – 75 MPa,

5 - 100 MPa; 6 - under the pressure rising from 0.10 to 100 MPa at different temperatures: 1 - 288.15 K, 2 - 298.15 K, 3 - 308.15 K, 4 - 323.15 K

составах, при которых имеющееся межмолекулярное взаимодействие в ассоциатах ослаблено тепловым движением или частично разрушено. Как видно из рис. За, минимальные значения $\Delta_{P0\to P}S_m^{E}$ соответствуют при $x_2 \approx 0.33$, что показывает наибольшее воздействие давления на структуру смеси вода + формамид при этом составе. Именно этому соотношению компонентов соответствует ассоциат 2H₂O-ФА. Понижение температуры в условиях постоянного давления (рис. 3б) также вызывает усиление структурирования при $x_2 \approx 0.33$. Кроме этого, необходимо учитывать, что с ростом температуры, согласно данным [16], доля линейных фрагментов в жидком формамиде уменьшается, а с ростом давления – увеличивается доля кольцевых фрагментов. Такое изменение связано с тем, что кольцевая структура имеет более компактное молекулярное расположение, чем линейная структура. Увеличение температуры при постоянном давлении приводит к распаду части водородных связей в формамиде, что приводит к увеличению доли линейной структуры, и в тоже время к уменьшению доли кольцевой структуры.

Рис. 4. Изменения в избыточной мольной энтальпии Δ_{P0→P}H_m^Eв смеси вода + формамид от мольной доли х₂: а – при 298,15 К от повышения давления с 0,10 МПа до следующих значений: (1 – 10 МПа, 2 – 25 МПа, 3 – 50 МПа, 4 – 75 МПа, 5 – 100 МПа); б – от повышения давления от 0,10 МПа до 100 МПа, при свядующих температурах (1 – 288, 15 К

- МПа до 100 МПа при следующих температурах (1 288,15 К, 2 – 298,15 К, 3 – 308,15 К, 4 – 323,15 К). Fig. 4. Changes in the excess molar enthalpy, $\Delta_{Po\rightarrow P}H_m^{E}$, of water
- Fig. 4. Changes in the excess molar enthalpy, $\Delta_{Po \rightarrow P} H_m^{-}$, of water + formamide mixture on FA mole fraction, x_2 : a at 298.15 K and under the pressure rising from 0.101 MPa to the following magnitudes: 1 10 MPa, 2 25 MPa, 3 50 MPa, 4 75 MPa, and 5 100 MPa; 6 under the pressure rising from 0.10 to 100 MPa at different temperatures: 1 288.15 K, 2 298.15 K,

3 – 308.15 K, and 4 – 323.15 K

Как видно из рис. 4, рост давления способствует тому, что процесс смешения H_m^{E} воды и формамида при повышенных давлениях становится более экзотермичным. Увеличение упорядоченности в смеси вода + ФА сопровождается образованием новых водородных связей. Изменение величины H_m^{E} при сжатии смеси свидетельствует о том, что эндотермический вклад от разрыва общего количества водородных связей в смеси меньше экзотермического вклада от образования новых H-связей, если рассматривать данные изменения только как результат процессов разрушения или образования водородных связей, и при допущении, что удельная энергия водородной связи между взаимодействующими молекулами в этом интервале давлений не изменяется. Понижение температуры также уменьшает величину $\Delta_{P0\to P}H_m^E$ (рис. 4б), и максимальная дисперсия изотерм наблюдается в области составов, где более вероятное максимальное содержание ассоциатов вода-формамид составов 2:1 и 1:1.

Рассчитанные нами величины $\Delta_{P0\to P}H_m^E$ и данные работы [33], где приведены энтальпии смешения воды и формамида при атмосферном давлении при 278,15-318,15 К, позволили рассчитать величины H_m^E при давлениях до 100 МПа. В табл. 2 приведены коэффициенты уравнения Редлиха-Кистера (8) описания экспериментальных значений H_m^E в интервалах температур 288,15-308,15 К и давлений 0,10-100 МПа.

$$H_m^E = x_2 (1 - x_2) \sum_{i=0}^{i=4} B_i (1 - 2x_2)^i$$
(8)

Как видно из рис. 5 повышение давления приводит к увеличению абсолютной величины энтальпии смешения. Например, в точке экстремума при 298,15 К вклад в величину H_m^E при повышении давления от атмосферного до 100 МПа составляет $\approx 36\%$.

Рис. 5. Энтальпии смешения H_m^E воды и формамида как функция мольной доли x_2 при 298,15 К и давлении, МПа: 1 – 0,10 [33], 2 – 100 [данные этой работы]. При 0,10 МПа точки соответствуют экспериментальным данным [33], все линии и точки при 100 МПА соответствуют расчету по уравнению Редлиха-Кистера

Fig. 5. The mixing enthalpy, H_m^E , of water and formamide on FA mole fraction, x_2 , at 298.15 K and preasure: 1 – 0.10 MPa [33] and 2 – 100 MPa (this work). At 0.10 MPa the symbols correspond to the experimental data from ref. [33], all points and lines at 100 MPa were calculated with the Redlich-Kister equation

Таблица 2

B _i	Т, К	Р, МПа					
		0,10	10,0	25,0	50,0	75,0	100,0
B_0	288,15	-1166,49	-1211,36	-1274,43	-1369,72	-1457,65	-1544,34
	298,15	-1079,15	-1118,39	-1173,92	-1258,21	-1335,25	-1408,86
	308,15	-1009,53	-1042,97	-1090,72	-1163,48	-1229,12	-1289,40
B ₁	288,15	-243,48	-269,67	-312,54	-386.32	-454,43	-506,16
	298,15	-156,52	-179,78	-215,18	-272,38	-323,55	-364,23
	308,15	-98,92	-119,31	-147,43	-187,99	-222,00	-251,13
<i>B</i> ₂	288,15	-367,25	-376,39	-395,27	-434,03	-471,40	-494,79
	298,15	-293,57	-306,98	-328,57	-364,60	-397,61	-423,93
	308,15	-245,20	-263,69	-288,61	-323,58	-353,66	-382,77
B_3	288,15	-274,79	-301,16	-329,22	-356,25	-375,24	-406,99
	298,15	-262,40	-282,18	-307,20	-340,33	-370,80	-408,01
	308,15	-243,97	-256,67	-277,65	-316,10	-357,48	-400,24
B_4	288,15	-179,29	-206,17	-235,96	-265,89	-287,02	-318,54
	298,15	-147,41	-162,06	-180,15	-204,45	-226,32	-251,85
	308,15	-132,72	-134,21	-140,02	-156,94	-178,41	-199,23
σ <i>Н^E</i> , Дж∙моль ⁻¹	288,15	0,22	0,28	0,38	0,55	0,83	1,20
	298,15	0,10	0,17	0,25	0,39	0,58	0,84
	308,15	0,17	0,23	0,38	0,64	0,89	1,13

Коэффициенты B_i (Джмоль⁻¹) уравнения (8) и стандартное отклонение σ (H_m^E) (Джмоль⁻¹) *Table 2*. The coefficients B_i (J·mol⁻¹) in equation (8) and H_m^E standard deviation, σ (H_m^E) (J·mol⁻¹)

Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2016. V. 59. N 6

Измерения плотности при атмосферном давлении были выполнены на оборудовании центра коллективного пользования "Верхневолжский региональный центр физико-химических исследований".

ЛИТЕРАТУРА

- Nielsen O.F., Lund P.A., Praestgraad E. // J. Chem. Phys. 1982. V. 77. P. 3878–3883.
- Kálmán E., Serke I., Pálinkás G., Zeidler M.D., Wiesmann F.J., Bertagnolli H., Chieux P. // Z. Naturforsch. 1983. Bd. 38a. P. 231–236.
- 3. Ohtaki H., Funaki A., Rode B.M., Reibnegger G.J. // Bull. Chem. Soc. Jpn. 1983. V. 56. P. 2116–2121.
- Ohtaki H., Itoh S. // Z. Naturforsch. 1985. Bd. 40a. P. 1351– 1352.
- Miyake M., Kaji O., Nakashima N., Suzuki T. // J. Chem. Soc. Faraday Trans. 2 1985. V. 81. P. 277–281.
- 6. Wiesmann F.J., Zeidler M.D., Bertagnolli H., Chieux P. // Mol. Phys. 1986. V. 57. P. 275–285.
- Sagarik P.K., Ahlrichs R. // J. Chem. Phys. 1987. V. 86. P. 5117–5126.
- Puhovski Y.P., Rode B.M. // Chem. Phys. 1995. V. 190. P. 61–82.
- 9. Suhai S. // J. Phys. Chem. 1996. V. 100. P. 3950–3958.
- Бушуев Ю.Г., Зайчиков А.М. // Изв. Академ. наук. Серия химическая. 1998. №10. С. 1911–1917.
- Lima M., Chelli R., Volkov V.V., Righini R. // J. Chem. Phys. 2009. V. 130. P. 204518.
- Bakó I., Megyes T., Bálint S., Chihaia V., Bellissent-Funel M.-C., Krienke H., Kopf A., Suh S.-H. // J. Chem. Phys. 2010. V. 132. P. 014506.
- Jadzyn J., Srwiergiel J. // Phys. Chem. Chem. Phys. 2012.
 V. 14. P. 3170–3175.
- 14. Radnai T., Megyes T., Bakó I., Kosztolanyi T., Palinkas G., Ohtaki H. // J. Mol. Liq. 2004. V. 110. P. 123–132.
- 15. Ohtaki H. // J. Mol. Liq. 2003. V. 103–104. P. 3–13.
- Ohtaki H., Katayama N., Ozutsumi K., Radnai T. // J. Mol. Liq. 2000. V. 88. P. 109–120.
- 17. Bellisent-Funel M.C., Nasr S., Bosio L. // J. Chem. Phys. 1997. V. 106. P. 7913–7919.
- Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. P. 345–348.
- Егоров Г.И., Макаров Д.М., Колкер А.М. // Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 2. С. 13–18.
- Егоров Г.И., Макаров Д.М., Колкер А.М. // Изв. вузов. Химия и хим. технология. 2015. Т. 58. Вып. 1. С. 8–13.
- 21. Егоров Г.И., Макаров Д.М. // Изв. вузов. Химия и хим. технология. 2010. Т. 53. Вып. 5. С. 45–48.
- Egorov G.I., Makarov D.M. // PVTX properties of binary mixtures of non-electrolytes. LAP LAMBERT Academic Publishing, Saarbrucken, Germany. 2008. 189p.
- Elola M.D., Ladanyi B.M. // J. Chem. Phys. 2006. V. 125. P. 184506.
- Fu A., Du D., Zhou Zh. // J. Mol. Struct. (THEOCHEM). 2003. V. 623. P. 315–325.
- Puhovskit Y.P., Rode B.M. // J. Phys. Chem. 1995. V. 99.
 P. 1566–1576.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты №15-43-03092-р_центр_а и №15-43-03093-р_центр_а).

REFERENCES

- Nielsen O.F., Lund P.A., Praestgraad E. // J. Chem. Phys. 1982. V. 77. P. 3878–3883.
- Kálmán E., Serke I., Pálinkás G., Zeidler M.D., Wiesmann F.J., Bertagnolli H., Chieux P. // Z. Naturforsch. 1983. Bd. 38a. P. 231–236.
- 3. Ohtaki H., Funaki A., Rode B.M., Reibnegger G.J. // Bull. Chem. Soc. Jpn. 1983. V. 56. P. 2116–2121.
- 4. **Ohtaki H., Itoh S.** // Z. Naturforsch. 1985. Bd. 40a. P. 1351–1352.
- Miyake M., Kaji O., Nakashima N., Suzuki T. // J. Chem. Soc. Faraday Trans. 2 .1985. V. 81. P. 277–281.
- Wiesmann F.J., Zeidler M.D., Bertagnolli H., Chieux P. // Mol. Phys. 1986. V. 57. P. 275–285.
- Sagarik P.K., Ahlrichs R. // J. Chem. Phys. 1987. V. 86. P. 5117–5126.
- Puhovski Y.P., Rode B.M. // Chem. Phys. 1995. V. 190. P. 61–82.
- 9. Suhai S. // J. Phys. Chem. 1996. V. 100. P. 3950–3958.
- Bushuev Yu.G., ZaichikovA.M. // Izv. Akad. Nauk. SSSR, Ser. Khim. 1998. N 10. P. 1911–1917 (in Russian).
- Lima M., Chelli R., Volkov V.V., Righini R. // J. Chem. Phys. 2009. V. 130. P. 204518.
- Bakó I., Megyes T., Bálint S., Chihaia V., Bellissent-Funel M.-C., Krienke H., Kopf A., Suh S.-H. // J. Chem. Phys. 2010. V. 132. P. 014506.
- Jadzyn J., Srwiergiel J. // Phys. Chem. Chem. Phys. 2012.
 V. 14. P. 3170–3175.
- 14. Radnai T., Megyes T., Bakó I., Kosztolanyi T., Palinkas G., Ohtaki H. // J. Mol. Liq. 2004. V. 110. P. 123–132.
- 15. Ohtaki H. // J. Mol. Liq. 2003. V. 103-104. P. 3-13.
- Ohtaki H., Katayama N., Ozutsumi K., Radnai T. // J. Mol. Liq. 2000. V. 88. P. 109–120.
- Bellisent-Funel M.C., Nasr S., Bosio L. // J. Chem. Phys. 1997. V. 106. P. 7913–7919.
- Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. P. 345–348.
- Egorov G. I., Makarov D. M., Kolker A.M. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2016. V. 59. N 2. P. 13–18 (in Russian).
- Egorov G. I., Makarov D. M., Kolker A.M. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2015. V. 58. N 1. P. 8–13 (in Russian).
- 21. Egorov G.I., Makarov D.M. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2010. V. 53. N5. P. 45–48 (in Russian).
- 22. Egorov G.I., Makarov D.M. // PVTX properties of binary mixtures of non-electrolytes. LAP LAMBERT Academic Publishing, Saarbrucken, Germany. 2008. 189p.
- Elola M.D., Ladanyi B.M. // J. Chem. Phys. 2006. V. 125. P. 184506.
- Fu A., Du D., Zhou Zh. // J. Mol. Struct. (THEOCHEM). 2003. V. 623. P. 315–325.

Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 6

- Puhovskit Y.P., Rode B.M. // J. Chem. Phys. 1995. V. 102.
 P. 2920–2927.
- Cordeiro M.A.M., Santana W.P., Cusinato R., Cordeiro J.M.M. // J. Mol. Struct. (THEOCHEM). 2006. V. 759. P. 159–164.
- Jelinska-Kazimierczuk M., Szydlowski J. // J. Solution Chem. 2001. V. 30. P. 623–640.
- 29. Torres R.B., Marchiore A.C.M., Volpe P.L.O. // J. Chem. Thermodyn. 2006. V. 38. P. 526–541.
- Campos V., Gómez Marigliano A.C., Sólimo H.N. // J. Chem. Eng. Data 2008. V. 53. P. 211–216.
- Boje L., Hvidt A. // J. Chem. Thermodyn. 1971. V. 3. P. 663–673.
- 32. Tasker I.R., Spitzer J.J., Surl S.K., Wood R.H. // J. Chem. Eng. Data 1983. V. 28. P. 266–275.
- Зайчиков А.М., Голубинский О.Е. // Журн. физ. химии. 1996. Т. 70. С. 1175–1179.
- Uosaki Y., Iwana F., Moriyoshi T. // J. Chem. Thermodyn. 1992. V. 24. P. 797–808.

- Puhovskit Y.P., Rode B.M. // J. Phys. Chem. 1995. V. 99. P. 1566–1576.
- Puhovskit Y.P., Rode B.M. // J. Chem. Phys. 1995. V. 102.
 P. 2920–2927.
- Cordeiro M.A.M., Santana W.P., Cusinato R., Cordeiro J.M.M. // J. Mol. Struct. (THEOCHEM). 2006. V. 759. P. 159–164.
- Jelinska-Kazimierczuk M., Szydlowski J. // J. Solution Chem. 2001. V. 30. P. 623–640.
- 29. Torres R.B., Marchiore A.C.M., Volpe P.L.O. // J. Chem. Thermodyn. 2006. V. 38. P. 526–541.
- Campos V., Gómez Marigliano A.C., Sólimo H.N. // J. Chem. Eng. Data. 2008. V. 53. P. 211–216.
- Boje L., Hvidt A. // J. Chem. Thermodyn. 1971. V. 3. P. 663–673.
- 32. Tasker I.R., Spitzer J.J., Surl S.K., Wood R.H. // J. Chem. Eng. Data. 1983. V. 28. P. 266–275.
- Zaiychikov A.M., Golubinskii O.E. // Zhurn. Fizich. Khim. 1996 V. 70. P. 1175–1179 (in Russian).
- Uosaki Y., Iwana F., Moriyoshi T. // J. Chem. Thermodyn. 1992. V. 24. P. 797–808.

Поступила в редакцию 31.03.2016 Принята к опублиеованию 06.05.2016

Received 31.03.2016 Accepted 06.05.2016