Для цитирования:

Гусейнова С.Н., Гюльмалиев А.М., Мовсумзаде Э.М. Расчет термодинамических параметров реакций синтеза циклоди-, циклотри- и циклотетрадиметилсилоксанов. *Изв. вузов. Химия и хим. технология.* 2016. Т. 59. Вып. 11. С. 27–32.

For citation:

Guseynova S.N., Gyulmaliev A.M., Movsumzade E.M. Calculation of thermodynamic parameters of synthesis reactions of cyclodi-, cyclotri-and cyclotetra dimethylsiloxanes. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2016. V. 59. N 11. P. 27–32.

УДК 547.245

С.Н. Гусейнова, А.М. Гюльмалиев, Э.М. Мовсумзаде

Саадет Назимовна Гусейнова (⊠), Эльдар Мирсамедович Мовсумзаде Уфимский государственный нефтяной технический университет, ул. Космонавтов, 1, Уфа, Республика Башкортостан, Россия, 450062 E-mail: guseynovas@yandex.ru (⊠), eldarmm@yahoo.com

Агаджан Мирзоевич Гюльмалиев

Институт нефтехимического синтеза им. А.В.Топчиева РАН (ИХНС РАН), Ленинский пр., 29, Москва, Россия, 119991 E-mail: gyulmaliev@ips.ac.ru

РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ РЕАКЦИЙ СИНТЕЗА ЦИКЛОДИ-, ЦИКЛОТРИ- И ЦИКЛОТЕТРАДИМЕТИЛСИЛОКСАНОВ

Методами квантовой химии и химической термодинамики исследованы реакции синтеза циклодиметилсилоксанов из диметилсилоксана. По данным квантовохимических расчетов с применением методов статистической термодинамики вычислены температурные зависимости термодинамических функций компонентов реакций. По величине энергии Гиббса оценены благоприятные условия протекания реакций.

Ключевые слова: циклические силоксаны, циклотетрадиметилсилоксан, квантово-химические расчеты, термодинамические параметры

UDC 547.245

S.N. Guseynova, A.M. Gyulmaliev, E.M. Movsumzade

Saadet N.Guseynova (⊠), Eldar M.Movsumzade Ufa State Petroleum Technological University, Kosmonavtov st., 1, Ufa, 450062, Russia E-mail: guseynovas@yandex.ru (⊠), eldarmm@yahoo.com

Agadzhan M.Gyulmaliev

A.V. Topchiev Institute of Petrochemical Synthesis of RAS, Leninskiy prosp., 29, Moscow, 119991, Russia E-mail: gyulmaliev@ips.ac.ru

Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2016. V. 59. N 11

CALCULATION OF THERMODYNAMIC PARAMETERS OF SYNTHESIS REACTIONS OF CYCLODI-, CYCLOTRI-AND CYCLOTETRA DIMETHYLSILOXANES

Reactions of synthesis of cyclodimethylsiloxanes (cyclodi-, cyclotri- and cyclotetradimethylsiloxanes) from dimethylsiloxane were studied by the methods of quantum chemistry and chemical thermodynamics. The temperature dependence of the thermodynamic functions of reaction components (E – internal energy, S – entropy, H – enthalpy, G – Gibbs energy, Cp – heat capacity at constant pressure and $(G-H_{298})/T$ – reduced Gibbs energy) was established according to quantum-chemical calculations which were carried out with the optimization of geometrical parameters of the molecules and the control of vibrational frequencies using statistical thermodynamics methods. The data on chemical hardness η of the molecules derived from the calculated energy of the frontier orbitals, are presented. It was found that only $(CH_3)_2SiO$ LUMO energy E_{n+1} was negative, thus, that molecule was electrophilic; the other molecules with positive value of energy were nucleophilic. The value of the chemical hardness η for all molecules exceeded 1 eV, that meant they were hard electro-/nucleophiles. The statistical and quantum-chemical methods of calculation of the thermodynamic functions of the molecule $[(CH_3)_2SiO]_4$ at T = 298.15 K were compared. It was shown that the results of the calculations by the statistical method were in good agreement with the corresponding quantum-chemical data. The Gibbs energy G of the reactions considering the electron energy of the components Eelec was calculated. The favorable conditions for the reactions proceed were estimated by the value of the Gibbs energy G. It was established that the cyclotetradimethylsiloxane formation was the most preferable at all the examined temperatures. The data obtained on the dimethylsiloxanes structure optimization indicated, that bond length Si - C varied slightly from molecule to molecule. The lengths of Si - O bonds varied depending on the geometrical structure of molecules. The paper showed that modern quantumchemical methods provided valuable information which is necessary to analyze the geometric and energy characteristics of the silicon compounds. It was noticed that it was possible to use data on thermodynamic functions obtained by quantum chemical calculations for the analysis of silicon compounds reactions in the absence of published data.

Key words: cyclic siloxanes, cyclotetradimethylsiloxane, quantum-chemical calculations, thermodynamic parameters

Среди соединений кремния особое место занимают полимеры – силоксаны, в которых атомы кремния связаны через атомы кислорода.

Для синтеза линейных полисилоксанов силоксановых каучуков используются циклические силоксаны. Силоксаны, благодаря своим уникальным свойствам, находят широкое применение в промышленности. Силоксановые мономеры часто используются в качестве компонентов или модификаторов органических смол и основного связующего компонента в рецептурах покрытий. Из-за низкого значения поверхностного натяжения полисилоксаны обладают водоотталкивающими и грязеотталкивающими свойствами и на практике широко применяются при обработке различных поверхностей. Такие покрытия обладают стойкостью к повышенным температурам, погодной коррозии, биообрастанию, истиранию и т.д. [1, 2].

Мономерные алкоксиланы, силоксановые смолы и жидкости с различными молекулярными массами, длинами цепей и с разнообразными функциональными группами открывают возможность выбора для создания на основе смол таких систем, которые отвечают конкретным требованиям и качественным характеристикам для совершенно разных областей применения, например, для конформных покрытий в электронике и лакокрасочных покрытий для автомобилей.

Структуры молекул диметилсилоксана и циклических диметилсилоксанов приведены ниже.

Продолжая исследования по изучению свойств силоксанов, представляет интерес оценить термодинамически благоприятные условия реакций образования циклических структур из диметилсилоксана [3-5]. Однако для выполнения такого расчета в литературе отсутствуют значения соответствующих термодинамических функций. Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 11

Диметилсилоксан Циклоди-диметилсилоксан Циклотри-диметилсилоксан Dimethylsiloxane Cyclodidimethylsiloxane Cyclotridimethylsiloxane

В данной работе нами, по результатам квантово-химических расчетов электронной структуры представленных молекул и методов статистической термодинамики, проведен расчет температурной зависимости их термодинамических функций [6]. Расчет электронной структуры молекул проводился по методу функционала плотности DFT с функционалом B3LYP/6-31G (d, p) по программе GAMESS [7]. Алгоритм расчета заключается в следующем. Из квантово-химических расчетов определялась общая сумма по состояниям по данным, равная [8]:

$$Q = Q_{tr} \cdot Q_{rot} \cdot Q_{vib}$$

где Q_{tr} – сумма по состояниям трансляционного движения; Q_{rot} – сумма по состояниям вращательного движения; Q_{vib} – сумма по состояниям колебательного движения.

Суммы по состояниям определялись по формулам

$$Q_{tr} = A \cdot T^{\frac{3}{2}}$$
$$Q_{rot} = B \cdot T^{\frac{3}{2}}$$

Циклотетра-диметилсилоксан Cyclotetradimethylsiloxane

$$Q_{vib} = \prod_{i=1}^{N_{vib}} \left(\frac{1}{1 - e^{-T_{Vib}/T}} \right)$$

Здесь, T_{vib} , $i = \frac{hv_i}{k}$, A и B – константы, кото-

рые определяются при T = 298,15 К., h – постоянная Планка, v_i – частота *i*-ого колебания, k – постоянная Больцмана.

Величины Q_{tr} , Q_{rot} , T_{vib} рассчитывались при температуре T = 298,15 К.

В табл. 1 приведены результаты расчета температурной зависимости термодинамических функций представленных молекул: Е – внутренней энергии, S – энтропии, H – энтальпии, G – энергии Гиббса, C_p – теплоемкости при постоянном давлении и (G-H₂₉₈)/T – приведенной энергии Гиббса. В табл. 2 сопоставлены результаты расчетов термодинамических функций молекулы [(CH₃)₂SiO]₄ при температуре T = 298,15 K, по статистическому и квантово-химическому методам. Приведенные данные показывают, что результаты расчетов по статистическому методу хорошо согласуются с соответствующими квантово-химическими данными [8].

Таблица 1

Температурная зависимость термодинамических функций цикло-диметилсилоксанов рассчитанная квантово-химическим методом B3LYP/6-31G (d, p)

Table 1. The temperature dependence of	thermodynamic functions o	f cyclo-dimethylsiloxanes calculated
by the questum	abamical mathed D2I VD/	(210)(d m)

	by the quantum - chemical method BSLYP/0-51G (d, p)					
Τ,	E,	G,	H,	Cp,	S,	(G-H ₂₉₈)/T
К	ккал/моль	ккал/моль	ккал/моль	кал/(моль·К)	кал/(моль·К)	кал/(моль·К)
			Силоксан (С	CH ₃) ₂ SiO		
298	52,29	28,32	52,89	22,49	82,45	-82,45
298,15	52,30	28,30	52,89	22,50	82,46	-82,45
300	52,34	28,15	52,93	22,58	82,60	-82,45
400	54,60	19,53	55,40	26,70	89,67	-83,39
500	57,26	10,24	58,25	30,25	96,02	-85,29
600	60,24	0,35	61,43	33,24	101,81	-87,57
700	63,49	-10,10	64,88	35,77	107,13	-89,99
800	66,98	-21,07	68,57	37,95	112,05	-92,44
900	70,68	-32,50	72,47	39,86	116,63	-94,88
1000	74,55	-44,38	76,54	41,53	120,92	-97,27

	жение табли	цы
--	-------------	----

					11	Jobonskenue muo.
Τ,	E,	G,	Н,	Cp,	S,	(G-H ₂₉₈)/T
К	ккал/моль	ккал/моль	ккал/моль	кал/(моль·К)	кал/(моль·К)	кал/(моль·К)
Циклоди-диметилсилоксан [(CH ₃) ₂ SiO] ₂						
298	107,18	76,15	107,77	45,67	106,12	-106,12
298,15	107,19	76,13	107,78	45,69	106,14	-106,12
300	107,27	75,94	107,86	45,88	106,43	-106,12
400	112,15	64,55	112,94	55,44	120,98	-108,05
500	117,90	51,78	118,89	63,29	134,22	-111,98
600	124,36	37,75	125,55	69,66	146,34	-116,71
700	131,40	22,55	132,79	74,97	157,49	-121,75
800	138,93	6,28	140,52	79,49	167,80	-126,87
900	146,88	-10,99	148,67	83,41	177,40	-131,96
1000	155,20	-29,18	157,18	86,82	186,37	-136,95
Циклотри-диметилсилоксан [(CH ₃) ₂ SiO] ₃						
298	162,10	120,30	162,69	70,00	142,25	-142,25
298,15	162,11	120,28	162,70	70,03	142,29	-142,25
300	162,24	120,02	162,84	70,31	142,72	-142,25
400	169,81	104,62	170,60	84,66	164,97	-145,20
500	178,69	87,09	179,68	96,46	185,18	-151,20
600	188,63	67,64	189,82	106,10	203,64	-158,43
700	199,46	46,41	200,85	114,12	220,62	-166,12
800	211,02	23,56	212,61	120,95	236,32	-173,92
900	223,22	-0,82	225,01	126,87	250,91	-181,68
1000	235,97	-26,60	237,96	132,02	264,56	-189,29
Циклотетра-диметилсилоксан [(CH ₃) ₂ SiO] ₄						
298	216,29	165,70	216,88	92,91	171,74	-171,74
298,15	216,30	165,67	216,89	92,94	171,79	-171,75
300	216,47	165,36	217,07	93,32	172,36	-171,74
400	226,58	146,62	227,37	112,23	201,89	-175,65
500	238,41	125,07	239,40	127,87	228,66	-183,62
600	251,66	100,96	252,85	140,68	253,14	-193,19
700	266,08	74,51	267,47	151,37	275,66	-203,39
800	281,48	45,89	283,07	160,50	296,48	-213,74
900	297,74	15,26	299,53	168,39	315,85	-224,02
1000	314,73	-17,24	316,72	175,29	333,95	-234,12

Согласно данным табл.1, с ростом температуры во всех рассмотренных случаях, величина энергии Гиббса снижается.

Нами рассмотрены три реакции синтеза циклических диметилсилоксанов.

$$4(CH_3)_2Si \longrightarrow O \longrightarrow O (III)$$

$$4(CH_3)_2Si \longrightarrow O O (III)$$

$$(CH_3)_2Si \longrightarrow O \longrightarrow Si(CH_3)_2$$

Энергию Гиббса *G* реакций I-III вычислили с учетом электронной энергии компонентов (I) *E*_{elec}, по следующим формулам [7]:

$$E_0 = E_{\text{elec}} + E_{ZPE},$$

$$E = E_0 + E_{\text{vib}} + E_{\text{rot}} + E_{\text{trans}},$$

$$H = E + RT,$$

$$G = H - TS.$$

Здесь, E_{elec} – электронная энергия, E_{ZPE} – энергия нулевых колебаний, E_{vib} – колебательная энергия, E_{rot} – вращательная энергия, E_{trans} – трансляционная энергия молекулы; R – универсальная газовая постоянная.

Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 11

Таблица 2

Сопоставления результаты расчетов термодинамических функций молекулы [(CH₃)₂SiO]₄ при температуре T=298,15К, по статистическому и квантовохимическому методам

Table 2. Comparisons of results of calculations of thermodynamic functions of a molecule [(CH₃)₂SiO]₄ at the temperature of T=298.15K using statistical and quantum chamical methods.

tum-chemical methods						
Метод	Е	Н	G	S	C _p	(G- H ₂₉₈)/T
	К	кал/мол	Ь	кал	/(моль	·К)
Стати- стиче- ский	216,30	216,89	165,67	171,79	92,94	-171,75
Квантово- хими- ческий	216,30	216,89	165,68	171,75	92,92	-171,76

В табл. 3 приведены температурные зависимости энергии Гиббса для реакций I-III $\Delta G(T)$, рассчитанные по данным табл. 1. Как следует из этих данных, реакция III при всех рассмотренных температурах несколько более вероятна, чем реакции I и II.

Таблица З Температурная зависимость энергии Гиббса ∆G реакций (I-III)

Table 3. Temperature dependence of energy of Gibbs ΔG for reactions (I-III)

тк	∆G, ккал/моль					
1, К	Реакция (I)	Реакция (II)	Реакция (III)			
298	-86,20	-161,13	-215,09			
300	-86,09	-160,95	-214,75			
400	-80,24	-150,49	-199,01			
500	-74,43	-140,14	-183,40			
600	-68,68	-129,93	-167,95			
700	-62,98	-119,80	-152,60			
800	-57,31	-109,75	-137,34			
900	-51,72	-99,83	-122,25			
1000	-46,15	-89,97	-107,23			

В табл. 4 приведены энергии граничных орбиталей и вычисленные на их основе индексы химической жесткости молекул η [9]. Как видно из таблицы, только у молекулы (CH₃)₂SiO энергия нижней вакантной орбитали E_{n+1} имеет отрицательный знак, следовательно она является электрофильным, а остальные молекулы с положительным знаком – нуклеофильными реагентами.

Рис. 1. Межатомные расстояния (Å) и валентные углы в молекулах диметилсилоксанов Fig. 1. Interatomic distances (Å) and valence angles for molecules of dimethylsiloxanes

Величина химической жесткости η для всех рассмотренных молекул больше 1 эВ, следовательно они являются жесткими электрофилами и нуклеофилами.

Таблица 4

Энергия верхних занятых E_n, нижних вакантных E_{n+1} орбиталей и химической жесткости η диметилсилоксанов

Table 4. Energy of the top occupied E_n and lower vacant E_{n+1} orbitals and chemical hardness of η of dime-

tilyishoxane						
Молекулы	E _n , эВ	Е _{n+1} , эВ	$\eta = (E_{n+1} - E_n)/2$			
(CH ₃) ₂ SiO	-7,00	-0,86	3,07			
[(CH ₃) ₂ SiO] ₂	-7,35	0,95	4,15			
[(CH ₃) ₂ SiO] ₃	-7,15	1,50	4,33			
[(CH ₃) ₂ SiO] ₄	-7,12	1,36	4,24			

ЛИТЕРАТУРА

- 1. Андрианов К.А. Кремнийорганические соединения. М.: ГХИ. 1955. 518 с.
- 2. **Оудиан** Дж. Основы химии полимеров. М.: Мир. 1974. 614 с.
- Мовсумзаде Э.М., Мамедов М.Г., Шихиев И.А. Синтез и превращения силоксинитрилов. *ЖОХ*. 1978. Т. 48. Вып. 3. С. 610 – 612.
- 4. Гусейнова С.Н., Сырлыбаева Р.Р., Мовсум-заде Н.Ч., Мовсумзаде Э.М. Расчет параметров реакций получения оксипроизводных кремнийорганических нитрилов. *Нефтепереработка и нефтехимия.* 2014. № 11. С. 31-33.
- 5. Гусейнова С.Н., Мовсум-заде Н.Ч. Элементоорганические и неорганические производные нитрилов. *Нефтепереработка и нефтехимия.* 2014. № 8. С. 32-34.
- Гюльмалиев А.М., Малолетнев А.С., Магомедов Э.Э., Кадиев Х.М. Исследование донорской способности гидроароматических соединений. *Химия твердого топлива*. 2012. № 4. С. 3–9.
- 7. Granovsky Alex. A. http://classic.chem.msu.su/gran/gamess/ index.html.
- 8. Левич В.Г. Введение в статистическую физику. М.: Гостехтеориздат. 1954. 528 с.
- 9. **Цирельсон В.Г.** Квантовая химия молекулы, молекулярные системы и твердые тела. М.: БИНОМ. 2010. 496 с.

На рис. 1 приведены структуры с оптимизированной геометрией диметилсилоксанов. Из приведенных данных следует, что от молекулы к молекуле расстояние Si–C меняется незначительно. Длины связей Si–O меняются в зависимости от геометрической структуры молекул.

Таким образом, проведенные исследования показывают, что современные квантовохимические методы позволяют получить ценную информацию, необходимую для анализа геометрических и энергетических характеристик соединения кремния. Особенно следует отметить, что при анализе их реакций превращения методами химической термодинамики, если в литературе отсутствуют полные данные по термодинамическим функциям компонентов, то можно воспользоваться их значениями, полученными на основе квантово-химических расчетов.

REFERENCES

- 1. Andrianov K.A. Organosilicone compounds. M.: GKhI. 1955. 518 p. (in Russian).
- 2. **Oudian Dzh.** Principles of Polymers Chemistry. M.: Mir. 1974. 614 p. (in Russian).
- 3. **Movsumzade E.M., Mamedov M.G., Shikhiev I.A.** Synthesis and transformations of siloksinitriles. *Zhurn. Obsh. Khimii.* 1978. V. 48. N 3. P. 610-612 (in Russian).
- Guseynova S.N., Syrlybaeva R.R., Movsum-zade N.Ch., Movsumzade E.M. Calculation of parameters of the reactions of obtaining of oxyderivatives of silicone nitriles. *Neftepererabotka and neftekhimiya*. 2014. N 11. P. 31-33 (in Russian).
- 5. **Guseynova S.N., Movsum-zade N.Ch.** Organometallic and inorganic derivatives of nitriles. *Neftepererabotka and neftekhimiya.* 2014. N 8. P. 32-34 (in Russian).
- Gyulmaliyev A.M., Maloletnev A.S., Magomedov E.E., Kadiyev Kh.M. The study of donor ability of hydroaromatics compounds. *Khimiya tverdogo topliva*. 2012. N 4. P. 3-9 (in Russian).
- Granovsky Alex. A. http://classic.chem.msu.su/gran/gamess/ index.html.
- Levich V.G. Introduction to statistical physics. M.: Gostekhteorizdat. 1954. 528p. (in Russian).
- 9. **Tsirelson V.G.** Quantum chemistry of a molecule, molecular systems and solid bodies. M.: BINOM. 2010. 496 p. (in Russian).

Поступила в редакцию 21.03.2016 Принята к опубликованию 15.06.2016

Received 21.03.2016 Accepted 15.06.2016