ENVIRONMENTALLY SAFE SYNTHESIS OF HYDROGENATION NICKEL CATALYSTS

  • Adele R. Latypova Ivanovo State University of Chemistry and Technology
  • Dmitry V. Filippov Ivanovo State University of Chemistry and Technology
  • Olga V. Lefedova Ivanovo State University of Chemistry and Technology
  • Alexey V. Bykov Tver State Technical University
  • Valentin Yu. Doluda Tver State Technical University
Keywords: nickel, catalyst, ecology, industry, hydrogenation, aniline, nitrobenzene, hydrogen spillover

Abstract

New types of nickel catalysts are proposed. They are formed during the surface deposition of nickel polynuclear hydroxo complexes on powdered carriers with subsequent reduction to the metal. This method of synthesis is environmentally friendly, safe and waste-free technology. Industrial wastewater will contain only an aqueous solution of sodium chloride and sodium carbonate. The catalytic activity was determined by the p-nitroaniline hydrogenation at 240 °C and 40 bar of hydrogen pressure. The properties and characteristics of the catalysts were studied using thermo-programmable desorption of ammonia, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. It was found that Ni/γ-Al2O3 catalyst may accelerate the process with NiO, NiO, γ-NiOOH and Ni(OH)2 compounds, while for Ni/SiO2 these are NiO, NiO, Ni2O3, γ-NiOOH and Ni(OH)2. However, pre-activation of the sample is necessary. The solution of this problem can be the catalyst activation in a gas atmosphere under hydrogen pressure, but at a lower temperature of about 250 °C. Changes in the metal content in the catalysts before and after use may be associated with the mutual transformations of modifications, which may or may not depend on the catalysis of the hydrogenation process. We established that the catalyst supported on gamma alumina was 10 times more active than the catalyst on silicon oxide. The discovery of the mechanism of transformations between modifications of oxides and metal hydroxides is of considerable interest in the development of new selective and environmentally friendly catalysts.

References

Zhang L., Wu W., Zhang Y., Zhou X. Clean synthesis gas production from municipal solid waste via catalytic gasification and reforming technology. Catal. Today. 2018. V. 318. P. 39–45. DOI: 10.1016/j.cattod.2018.02.050.

Ghayur A., Verheyen T.V., Meuleman E. Biological and chemical treatment technologies for waste amines from CO2 capture plants. J. Environ. Manage. 2019. V. 241. N 1. P. 514–524. DOI: 10.1016/j.jenvman.2018.07.033.

Cheng J., Zhou F., Xuan X., Liu J., Zhou J., Cen K. Cascade chain catalysis of coal combustion by Na-Fe-Ca composite promoters from industrial wastes. Fuel. 2016. V. 181. P. 820–826. DOI: 10.1016/j.fuel.2016.05.064.

Wang J., Yuan Z., Nie R., Hou Z., Zheng X. Hydrogenation of nitrobenzene to aniline over silica gel supported nickel catalysts. Ind. Eng. Chem. Res. 2010. N 49. P. 4664–4669. DOI: 10.1021/ie1002069.

Tsvetkova I.B., Matveeva V.G., Doluda V.Y., Bykov A.V., Sidorov A.I. Pd(II) nanoparticles in porous polystyrene: Factors influencing the nanoparticle size and catalytic properties. J. Mater. Chem. 2012. V. 22. N 13. P. 6441–6448. DOI: 10.1039/c2jm30634d.

Huo X., Van Hoomissen D.J., Liu J., Vyas S., Strathmann T.J. Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts. Appl. Catal. B Environ. 2017. V. 211. P. 188–198. DOI: 10.1016/j.apcatb.2017.04.045.

Dyson P.J., Kiwi-Minsker L., Beswick O., Oberson L., Muriset F., Sulman E., LaGrange T., Lamey D., Yoon S. Ni-based structured catalyst for selective 3-phase hydrogenation of nitroaromatics. Catal. Today. 2016. V. 273. P. 244–251. DOI: 10.1016/j.cattod.2016.04.020.

He L., Niu Z., Miao R., Chen Q., Guan Q., Ning P. Selective hydrogenation of phenol by the porous Car-bon/ZrO2 supported Ni–Co nanoparticles in subcritical wa-ter medium. J. Clean. Prod. 2019. V. 215. P.375–381. DOI: 10.1016/j.jclepro.2019.01.077.

Hutchings G.J., Van Der Riet M., Hunter R. CO Hydrogenation using Cobalt / Manganese Oxide Catalysts. J. Chem. Soc. Faraday Trans. 1989. V. 85. P. 19892875–2890. DOI: 10.1039/F19898502875.

Battilocchio C., Hawkins J.M., Ley S.V. Mild and selective heterogeneous catalytic hydration of nitriles to amides by flowing through manganese dioxide. Org. Lett. 2014. V. 16. P. 1060–1063. DOI: 10.1021/ol403591c.

Adkins H., Cramer H.I. The use of nickel as a catalyst for hydrogeneration. J. Am. Chem. Soc. 1930. V. 52. P. 4349–4358. DOI: 10.1021/ja01374a023.

Qi S.C., Zhang L., Einaga H., Kudo S., Norinaga K., Ichiro Hayashi J. Nanosized nickel catalyst for deep hy-drogenation of lignin monomers and first-principles insight into the catalyst preparation. J. Mater. Chem. A. 2017. V. 5. P. 3948–3965. DOI: 10.1039/c6ta08538e.

Al-Oweini R., El-Rassy H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Mol. Struct. 2009. V. 919. P. 140–145. DOI: 10.1016/j.molstruc.2008.08.025.

Beganskienė A., Sirutkaitis V., Marytė kurtinaitienė R.J., Kareiva A. FTIR. TEM and NMR Iinvestigations of Stöber Silica Nanoparticles. Mater. Sci. 2003. V. 10. P. 1392–1320. DOI: 10.1.1.451.9388.

Jafar Tafreshi M., Masoomi Khanghah Z. Infrared spectroscopy studies on solgel prepared alumina powders. Medziagotyra. 2015. V. 21. P. 28–31. DOI: 10.5755/j01.ms.21.1.4872.

Saikia B.J., Parthasarathy G. Fourier transform infrared spectro-scopic characterization of kaolinite from Assam and Meghalaya. Northeast. India. J. Mod. Phys. 2010. V. 01. P. 206–210. DOI: 10.4236/jmp.2010.14031.

El Khadem H.S. Spectrometric identification of organic compounds. J. Chem. Educ. 1975. V. 52. P. 334. DOI: 10.1021/ed052pA334.2.

Lu X., He J., Jing R., Tao P., Nie R., Zhou D., Xia Q. Microwave-activated Ni/carbon catalysts for highly selective hydrogenation of nitrobenzene to cyclohexylamine. Sci. Rep. 2017. V. 7. P. 1–11. DOI: 10.1038/s41598-017-02519-0.

Grosvenor A.P., Biesinger M.C., Smart R.S.C., McIntyre N.S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006. V. 600. P. 1771–1779. DOI: 10.1016/j.susc.2006.01.041.

Gerson A., Biesinger M.C., Smart R.S.C., Payne B.P., Lau L.W.M. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal. oxide and hydroxide systems. Surf. Interface Anal. 2009. V. 41. P. 324–332. DOI: 10.1002/sia.3026.

Pinnel M.R. Oxidation of nickel and nickelgold alloys in air at 50°–150°C. J. Electrochem. Soc. 2006. V. 126. P. 1274. DOI: 10.1149/1.2129256.

Miao C., Zhu Y., Huang L., Zhao T. The relationship between structural stability and electrochemical performance of multi-element doped alpha nickel hydroxide. J. Power Sources. 2015. V. 274. P. 186–193. DOI: 10.1016/j.jpowsour.2014.10.058.

Huang J.-J., Hwang W.-S., Weng Y.-C., Chou T.-C. Transformation characterization of Ni(OH)2/NiOOH in Ni-Pt films using an electrochemical quartz crystal microbalance for ethanol sensors. Mater. Trans. 2010. V. 51. P. 2294–2303. DOI: 10.2320/matertrans.m2010079.

Published
2019-08-30
How to Cite
Latypova, A. R., Filippov, D. V., Lefedova, O. V., Bykov, A. V., & Doluda, V. Y. (2019). ENVIRONMENTALLY SAFE SYNTHESIS OF HYDROGENATION NICKEL CATALYSTS. ChemChemTech, 62(9), 46-52. https://doi.org/10.6060/ivkkt.20196209.6065
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)

1 2 > >>