SYNTHESIS AND RESEARCH OF ALUMINUM-SCANDIUM NITRIDE THIN FILMS AS A PART OF PIEZOELECTRIC LAYERED STRUCTURES BASED ON SYNTHETIC DIAMOND SINGLE CRYSTALLINE SUBSTRATES

  • Nikolay V. Luparev Technological Institute for Superhard and Novel Carbon Materials
  • Boris P. Sorokin Technological Institute for Superhard and Novel Carbon Materials
  • Victor V. Aksenenkov Technological Institute for Superhard and Novel Carbon Materials
Keywords: aluminum-scandium nitride, magnetron deposition, crystal structure, texture of aluminumscandium nitride films, synthetic single-crystal diamond

Abstract

 solution of substitution of aluminum-scandium nitride in a wide range of scandium concentrations are considered. Based on them, piezoelectric layered structures with substrates made of synthetic diamond single crystal are obtained. Such structures are suitable for implementing microwave high overtone bulk resonators operating on bulk acoustic waves up to 20 GHz. Physical and chemical properties of aluminum-scandium nitride were studied, including analysis of a crystalline structure by X-ray diffraction and scanning electron microscopy. The methods of probe force microscopy and optical profilometry were used to study the film’s roughness. The quality of the films obtained was analyzed by the data on the full width of the reflex (002) at half the maximum. It was shown that an increase in Sc concentration leads to an increase in the full width of the reflex (002) at half the maximum, which may be due to an increase in disordering the structure of the transitive phase from wurzite to ScN rock salt. An increase in Sc concentration also leads to a systematic decrease in the average size of crystallites. Starting with scandium concentrations above 25%, there is a noticeable downward trend in the degree of ASN films texturing. Therefore, the actual piezoelectric response will decrease despite an increase in the electromechanical coupling coefficient. Thus, the area of scandium concentration values at which the best combination of crystal structure quality, film texture and piezoelectric properties of aluminum-scandium nitride is achievable is below 25%. The criteria developed for the perfection of axisymmetric texture in the application of aluminum-scandium nitride films were convenient for analyzing changes in the quality of films and further improving the synthesis processes.

References

Akiyama M., Kamohara T., Kano K., Teshigahara A., Takeuchi Y., Kawahara N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009. V. 21. P. 593–596. DOI: 10.1002/adma.200802611.

Akiyama M., Kano K., Teshigahara A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 2009. V. 95. P. 162107. DOI:

1063/1.3251072.

Yanagitani T., Suzuki M. Electromechanical coupling and gigahertz elastic properties of ScAlN films near phase

boundary. Appl. Phys. Lett. 2014. V. 105. P. 122907. DOI: 10.1063/1.4896262.

Mishin S., Oshmyansky Yu. Manufacturability of highly doped Aluminum Nitride films. Proc. 2015 IEEE IFCSETFT. Apr 13. 2015 – Apr 15. 2015. Denver, CO, United States. P. 777–781.

Akiyama M., Umeda K., Honda A., Nagase T. Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films. Appl. Phys. Lett. 2013. V. 102. P. 021915. DOI: 10.1063/1.4788728.

Elfrink R., Kamel T., Goedbloed M., Matova S., Hohlfeld D., Van Andel Y., Van Schaijk R. Vibration energy

harvesting with aluminum nitride-based piezoelectric devices. J. Micromech. Microeng. 2009. V. 19. P. 094005.

DOI: 10.1088/0960-1317/19/9/094005.

Mayrhofer P.M., Rehlendt C., Fischeneder M., Kucera M., Wistrela E., Bittner A., Schmid U. ScAlN MEMS cantilevers for vibrational energy harvesting purposes. J. Microelectromechanical Systems. 2017. V. 26. N 1. P. 102–112. DOI: 10.1109/JMEMS.2016.2614660.

Mayrhofer P.M., Wistrela E., Kucera M., Bittner A., Schmid U. Fabrication and characterization of ScAlNbased piezoelectric MEMS cantilevers. Proc. 2015 IEEE Transducers Conf. June 21-25. 2015. Anchorage. Alaska.

USA. P. 2144 – 2147.

Arakawa K., Yanagitani T., Kano K., Teshigahara A., Akiyama M. Deposition techniques of c-axis-tilted ScAlN

films by conventional RF magnetron sputtering. Proc. IEEE Ultrason. Symp. October 11-14. 2010. San Diego. CA. USA. P. 1050 – 1053.

Yanagitani T., Arakawa K., Kano K., Teshigahara A., Akiyama M. Giant shear mode electromechanical coupling coefficient k15 in c-axis tilted ScAlN films. Proc. IEEE Ultrason. Symp. October 11-14. 2010. San Diego.

CA. USA. P. 2095-2098.

Moreira M., Bjurström J., Katardjev I., Yantchev V. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum. 2011. V. 86. P. 23–26. DOI: 10.1016/j.vacuum.2011.03.026.

Bartoli F., Moutaouekkil M., Streque J., Pigeat P., HageAli S., Boulet P., M’Jahed H., Elmazria O., Zhgoon S.,

Bartoli F., Aubert T., Bou Matar O., Talbi A. Theoretical and experimental study of ScAlN/Sapphire structure based

SAW sensor. Proc. 2017 IEEE Sensors Conf. October 29 – November 1, 2017. Glasgow. Scotland. UK. P. 1-3. DOI:

1109/ICSENS.2017.8233938.

Sorokin B.P., Kvashnin G.M., Novoselov A.S., Burkov S.I., Shipilov A.B., Luparev N.V., Aksenenkov V.V., Blank V.D. Application of thin piezoelectric films in diamond-based acoustoelectronic devices. In: Piezoelectricity –

Organic and Inorganic Materials and Applications. Eds S. G. Vassiliadis, and D. Matsouka. Rijeka, Croatia: IntechOpen. 2018. Chap. 2. P. 15-41. DOI: 10.5772/intechopen.76715.

Sorokin B.P., Novoselov A.S., Kvashnin G.M., Luparev N.V., Asafiev N.O. Shipilov A.B., Aksenenkov V.V. Development and study of composite acoustic resonators with Al/(Al, Sc)N/Mo/diamond structure with a high Q factor in the UHF range. Acoust. Phys. 2019. V. 65. N 3. P. 263–268. DOI: 10.1134/S1063771019030072.

Tasnádi F., Alling B., Höglund C., Wingqvist G., Birch J., Hultman L., Abrikosov I.A. Origin of the anomalous

piezoelectric response in wurtzite ScxAl1-xN alloys. Phys. Rev. Lett. 2010. V. 104. N 13. P. 137601-1–137601-4.

DOI: 10.1103/PhysRevLett.104.137601.

Wang W., Mayrhofer P.M., He X., Gillinger M., Ye Zh., Wang X., Bittner A., Schmid U., Luo J.K. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient. Appl. Phys. Lett. 2014. V. 105. P. 133502. DOI: 10.1063/1.4896853.

Matloub R., Artieda A., Sandu C., Milyutin E., Muralt P. Electromechanical properties of Al0.9Sc0.1N thin films

evaluated at 2.5 GHz film bulk acoustic resonators. Appl. Phys. Lett. 2011. V. 99. P. 092903. DOI: 10.1063/1.3629773.

Fichtner S., Wolff N., Lofink F., Kienle L., Wagner B. AlScN: A III-V semiconductor based ferroelectric. J. Appl.

Phys. 2019. V. 125. P. 114103. DOI: 10.1063/1.5084945.

Shvyd’ko Yu., Stoupin S., Blank V., Terentyev S. Near100% Bragg reflectivity of X-rays. Nature Photonics. 2011.

V. 5. P. 539-542. DOI: 10.1038/NPHOTON.2011.197.

Barth S., Bartzsch H., Gloess D., Frach P., Herzog T., Walter S., Heuer H. Sputter deposition of stresscontrolled piezoelectric AlN and AlScN films for ultrasonic and energy harvesting applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014. V. 61. P. 1329–1334. DOI: 10.1109/ULTSYM.2014.0190.

Sorokin B.P., Kvashnin G.M., Telichko A.V., Gordeev G.I., Burkov S.I., Blank V.D. Study of High overtone Bulk

Acoustic Resonators based on the Me1/AlN/Me2/(100) diamond piezoelectric layered structure. Acoust. Phys. 2015. V. 61. N 4. P. 422–433. DOI: 10.1134/S106377101503015X.

Aubert T., Elmazria O., Assouar B., Bouvot L., Oudic M. Surface acoustic wave devices based on AlN/sapphire structure for high temperature applications. Appl. Phys. Lett. 2010. V. 96. P. 203503. DOI: 10.1063/1.3430042.

Published
2020-11-23
How to Cite
Luparev, N. V., Sorokin, B. P., & Aksenenkov, V. V. (2020). SYNTHESIS AND RESEARCH OF ALUMINUM-SCANDIUM NITRIDE THIN FILMS AS A PART OF PIEZOELECTRIC LAYERED STRUCTURES BASED ON SYNTHETIC DIAMOND SINGLE CRYSTALLINE SUBSTRATES. ChemChemTech, 63(12), 77-84. https://doi.org/10.6060/ivkkt.20206312.6312
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)