DEVELOPMENT OF A BASIC TECHNOLOGICAL SCHEME FOR THE PROCESS OF ADSORPTION DESULPHURIZATION OF GASOLINE FRACTION USING SILICA GEL MODIFIED WITH ZINC(II) PIVALATE

  • Anna S. Kamyshnikova Astrakhan State Technical University
  • Andrey O. Okhlobystin Astrakhan State Technical University
  • Olga N. Karatun Astrakhan State Technical University
  • Valentina N. Storozhenko Astrakhan State Technical University
  • Ekaterina N. Zorina-Tikhonova N.S. Kurnakov’s Institute of General and Inorganic Chemistry of the RAS
  • Nadezhda T. Berberova Astrakhan State Technical University
Keywords: adsorption desulphurization, hydrogen sulfide and the low-molecular-weight thiols, basic technological scheme, zinc(II) pivalate, silica gel

Abstract

The paper presents the results of a theoretical and experimental study of the effectiveness of adsorption desulfurization of hydrocarbon motor fuels using silica gel modified with zinc(II) pivalate. The expediency of using powdered silica gel in the process of removing toxic and highly corrosive hydrogen sulfide and thiols are shown. Based on the effective parameters of adsorptive desulphurization established in laboratory conditions, a schematic process flow diagram for the process of removing acidic sulfur compounds from the gasoline fraction at a temperature of 25 ℃ and a pressure close to atmospheric are proposed. The possibility of solvent regeneration of the saturated adsorbent of the desulfurization process at a temperature of 25 ℃ and a pressure close to atmospheric are shown. The most effective solvent for the regeneration process is isopropyl alcohol. To maintain the activity and stability of the adsorbent during the desulphurization process, the technological scheme provides for ultrasonic feeding of the regenerated adsorbent with a saturated solution of the modifier, followed by drying with fuel gas. The recovery of isopropyl alcohol after washing the saturated adsorbent is carried out by distillation at a temperature of 90 ℃ and a pressure close to atmospheric. Technology based on adsorption by a scavenger consisting of a carrier and a polynuclear carboxylate complex of transition metal allows the removal of sulfur-containing compounds directly in the feed stream. A reactor with a suspension adsorbent bed is proposed as the main apparatus for the process of adsorption desulphurization. The process of washing and separating the suspension of adsorbent and fuel takes place in drum vacuum filters. The concentrate of sulfur compounds obtained during the purification process can be used as a feedstock in chemical and petrochemical processes in order to obtain practically important sulfur-containing compounds.

For citation:

Kamyshnikova A.S., Okhlobystin A.O., Karatun O.N., Storozhenko V.N., Zorina-Tikhonova E.N., Berberova N.T. Development of a basic technological scheme for the process of adsorption desulphurization of gasoline fraction using silica gel modified with zinc(II) pivalate. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 2. P. 92-99. DOI: 10.6060/ivkkt.20236602.6705.

References

Kitashov Y.N., Nazarov A.V. Zorya E.I., Muradov A.V. Alternative Methods for the Removal of Sulfur Compounds from Petroleum Fractions. Chem. Technol. Fuels Oils. 2019. V. 55. N 5. P. 584-589. DOI: 10.1007/s10553-019-01070-0.

Pivovarova N.A., Berberova N.T., Shinkar E.V., Akishina E.S. Promising technology for removal and disposal of hydrogen sulfide from fuel oil. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 8. P. 39-53 (in Russian). DOI: 10.6060/ivkkt.20206308.6143.

Seidova S.A. Extraction methods of cleaning of motor fuel. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 10. P. 30-39 (in Russian). DOI: 10.6060/ivkkt.20196210.5941.

Glagoleva O.F., Kapustin V.M. Improving the efficiency of oil treating and refining processes (Review). Petrol. Chem. 2020. V. 60. N 11. P. 1207-1215. DOI: 10.1134/S0965544120110092.

Energy strategy of Russia until 2035. It is approved by the order of the Government of the Russian Federation N 1523-p of 09.06.2020 (in Russian). https://minenergo.gov.ru/node/1026.

Crandall B.S., Zhang J., Stavila V., Allendorf M.D., Li Z. Desulfurization of liquid hydrocarbon fuels with mi-croporous and mesoporous materials: metal organic frame-works, zeolites and mesoporous silicas. Ind. Eng. Chem. Res. 2019. V. 58. N 42. P. 19322-19352. DOI: 10.1021/acs.iecr.9b03183.

Saha B., Vedachalam S., Dalai A.K. Review on recent advances in adsorptive desulfurization. Fuel Process. Technol. 2021. V. 214. P. 106685. DOI: 10.1016/j.fuproc.2020.106685.

Ganiyu S.A., Lateef S.A. Review of adsorptive desulfurization process: Overview of the non-carbonaceous materials, mechanism and synthesis strategies. Fuel. 2021. V. 294. P. 120273. DOI: 10.1016/j.fuel.2021.120273.

Zhao S., Yi H., Tang X., Gao F., Zhang B., Wang Z., Zuo Y. Methyl mercaptan removal from gas streams using metal-modified activated carbon. J. Clean. Prod. 2015. V. 87. P. 856-861. DOI: 10.1016/j.jclepro.2014.10.001.

De Aguiar M.F., Coelho G.L.V. Adsorption of sulfur compounds from natural gas by different adsorbents and desorption using supercritical CO2. J. Environ. Chem. Eng. 2017. V. 5. N 5. P. 4353-4364. DOI: 10.1016/j.jece.2017.07.079.

Dehghan R., Anbia M. Zeolites for Adsorptive Desulfurization from Fuels: A Review. Fuel Process. Technol. 2017. V. 167. P. 99-116. DOI: 10.1016/j.fuproc.2017.06.015.

Georgiadis A.G., Charisiou N.D., Gaber S., Polychronopoulou K., Yentekakis I.V., Goula M.A. Adsorp-tion of Hydrogen Sulfide at Low Temperatures Using an Industrial Molecular Sieve: An Experimental and Theoretical Study. ACS Omega. 2021. V. 6. N 23. P. 14774-14787. DOI: 10.1021/acsomega.0c06157.

Sui R., Lesage K.L., Carefoot S.K., Fürstenhaupt T., Rose C.J., Marriott R.A. Selective Adsorption of Thiols Using Gold Nanoparticles Supported on Metal Oxides. Langmuir. 2016. V. 32. N 36. P. 9197-9205. DOI: 10.1021/acs.langmuir.6b02497.

Gupta N.K., Bae J., Kim S., Kim K.S. Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H2S removal: Adsorption, regeneration, and mechanism. Chemosphere. 2021. V. 274. P. 129789. DOI: 10.1016/j.chemosphere.2021.129789.

Ma X., Liu H., Li W., Peng S., Chen Y. Reactive adsorption of low concentration methyl mercaptan on a Cu-based MOF with controllable size and shape. RSC Adv. 2016. V. 6. N 99. P. 96997-97003. DOI: 10.1039/C6RA18593B.

Peng S., Li W., Deng Y., Li W., Ma X., Chen Y. Removal of low concentration CH3SH with regenerable Cu-doped mesoporous silica. J. Colloid Interface Sci. 2018. V. 513. P. 903-910. DOI: 10.1016/j.jcis.2017.12.005.

Cao X., Lu J., Zhao Y., Tian R., Zhang W., He D., Luo Y. Promotional Effects of Rare-Earth Praseodymium (Pr) Modification over MCM-41 for Methyl Mercaptan. Catalytic Decomposition. Processes. 2021. V. 9. P. 400. DOI: 10.3390/pr9020400.

Okhlobystin A.O., Kamyshnikova A.S., Oleinikova K.V., Storozhenko V.N., Pashchenko K.P., Berberova N.T. Theoretical and experimental study of the adsorption capacity of transition metal acetates in the process of desulfurization of a model hydrocarbon fuel. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 12. P. 98-104. DOI: 10.6060/ivkkt.20216411.6518.

Okhlobystin A.O., Eremenko I.L., Storozhenko V.N., Oleinikova K.V., Kamyshnikova A.S., Pashchenko K.P., Shinkar’ E.V., Zorina-Tikhonova E.N., Kiskin M.A., Baranchikov A.E., Kottsov S.Yu., Berberova N.T. Removal of acidic-sulfur-containing components from gasoline fractions and their simulated analogues using silica gel modi-fied with transition-metal carboxylates. ACS Omega. 2021. V. 6. N 36. P. 23181-23190. DOI: 10.1021/acsomega.1c02777.

Okhlobystin A.O., Kamyshnikova A.S., Oleinikova K.V., Pashchenko K.P., Storozhenko V.N., Kiskin M.A., Berberova N.T., Eremenko I.L. Simulation of Sorption Purification of Hydrocarbon Fuel from Sulfur Compounds with Transition-Metal Pivalates. Theor. Found. Chem. Eng. 2022. V. 54. N 1. С. 84-91. DOI: 10.1134/S0040579522010067.

Published
2023-01-20
How to Cite
Kamyshnikova, A. S., Okhlobystin, A. O., Karatun, O. N., Storozhenko, V. N., Zorina-Tikhonova, E. N., & Berberova, N. T. (2023). DEVELOPMENT OF A BASIC TECHNOLOGICAL SCHEME FOR THE PROCESS OF ADSORPTION DESULPHURIZATION OF GASOLINE FRACTION USING SILICA GEL MODIFIED WITH ZINC(II) PIVALATE. ChemChemTech, 66(2), 92-99. https://doi.org/10.6060/ivkkt.20236602.6705
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)