НОВЫЕ ДОСТИЖЕНИЯ В СИНТЕЗЕ ЦИКЛОАЛКА[b]ИНДОЛОВ

  • Rail R. Gataullin Уфимский федеральный исследовательский центр РАН
Ключевые слова: циклопента[b]индол, 2,3-аннелирование, циклоприсоединение, тетрагидрокарбазол, циклогепта[b]индол

Аннотация

В обзоре обобщены данные о синтезе соединений, остовом которых служит гетероцикл циклоалка[b]индольного строения. Рассмотрены подходы к синтезу гомологичных структур, начиная от аннелированного карбоциклического фрагмента с тремя атомами углерода до восьмичленных аналогов. Представлены примеры циклизаций, в том числе с наведением хиральных центров с использованием соответствующих каталитических систем, с различной энантио- и диастереоселективностью. Уделено внимание реакциям карбоциклизации, протекающим в присутствии комплексов металлов, алкилатов лития, меж- или внутримолекулярного циклоприсоединения алленов, активированных алкенов с 1,3-диполярофилами или диеноподобными системами. При получении циклопропа[b]индолов наиболее часто используются реакции [2+1]-циклоприсоединения индолов с различными карбенами, в подходах к синтезу индолов, аннелированных с циклобутаном применение находят реакции [2+2]-циклоприсоединения. Для получения индолов, к которым 2,3-аннелированы карбоциклы средних размеров, эффективно используются синтетические приемы, включающие применение в качестве исходных веществ производных индола, 3-нитроиндола, внутри- и межмолекулярные реакции 3-этинил-, 3-алленил-, 3-алкенил- или функционализированных 2-алкизамещенных индолов в присутствии комплексов палладия, золота, родия, меди, серебра, индия, фосфорорганических кислот и их амидов, трифторэтанола, гексафторизопропанола, органических сульфо- или трифторуксусной кислот. Известны методы фотохимического воздействия, приводящие к циклопента[b]индолам. При получении этих гетероциклов успешно используются реакции циклоприсоединения 1,3-диполей, генерируемых из (2-индолил)диарилметанолов, к диполярофилам. Не менее эффективны реакции циклоприсоединения производных 2-винилиндола к активированным алкенам или карбонильным соединениям в присутствии различных катализаторов, приводящие к ди- или тетрагидрокарбазолам или их семичленным гомологам. Одним из часто используемых подходов для получения циклоалка[b]индолов являются реакции, основанные на катализируемых превращениях индолзамещенных циклопропанов или межмолекулярном взаимодействии циклопропанов с индолами в различных условиях.

Для цитирования:

Гатауллин Р.Р. Новые достижения в синтезе циклоалка[b]индолов. Изв. вузов. Химия и хим. технология. 2023. Т. 66. Вып. 2. С. 6-22. DOI: 10.6060/ivkkt.20236602.6720.

Литература

Tang F., Banwell M.G., Willis A.C. Palladium-Catalyzed Ullmann Cross-Сoupling/Tandem Reductive Cyclization Route to Key Members of the Uleine Alkaloid Family. J. Org. Chem. 2016. V. 81. N 7. P. 2950−2957. DOI: 10.1021/acs.joc.6b00240.

Kazak M., Priede M., Shubin K., Bartrum H.E., Poisson J.-F., Suna E. Stereodivergent Synthesis of Pseudota-bersonine Alkaloids. Org. Lett. 2017. V. 19. N 19. P. 5356−5359. DOI: 10.1021/acs.orglett.7b02635.

Xiao T., Chen Z.-T., Deng L.-F., Zhang D., Liu X.-Y., Song H., Qin Y. Formal total synthesis of the akuammiline alkaloid (+)-strictamine. Chem. Commun. 2017. V. 53. N 94. P. 12665. DOI: 10.1039/c7cc08153g.

Gan P., Pitzen J., Qu P., Snyder S.A. Total Synthesis of the Caged Indole Alkaloid Arboridinine Enabled by aza-Prins and Metal-Mediated Cyclizations. J. Am. Chem. Soc. 2018. V. 140. N 3. P. 919−925. DOI: 10.1021/jacs.7b07724.

Patir S., Tezeren M.A., Salih B., Ertürk E. Stereoselec-tive Total Synthesis of (±)-Dasycarpidol and (±)-Dasycarpidone. Synthesis. 2016. V. 48. N 23. P. 4175–4180. DOI: 10.1055/s-0035-1562528.

Jiang S.-Z., Zeng X.-Y., Liang X., Lei T., Wei K., Yang Y.-R. Iridium-Catalyzed Enantioselective Indole Cycliza-tion: Application to the Total Synthesis and Absolute Ste-reochemical Assignment of (-)-Aspidophylline A. Angew. Chem. Int. Ed. 2016. V. 55. N 12. P. 4044–4048. DOI: 10.1002/ange.201511549.

Zhang Z.-X., Chen S.-C., Jiao L. Total Synthesis of (+)-Minfiensine: Construction of the Tetracyclic Core Struc-ture by an Asymmetric Cascade Cyclization. Angew. Chem. Int. Ed. 2016. V. 55. N 28. P. 8090–8094. DOI: 10.1002/anie.201602771.

Kçtzner L., Leutzsch M., Sievers S., Patil S., Waldmann H., Zheng Y., Thiel W., List B. The Organocatalytic Ap-proach to Enantiopure 2H- and 3H-Pyrroles: Inhibitors of the Hedgehog Signaling Pathway. Angew. Chem. Int. Ed. 2016. V. 55. N 23. P. 7693–7697. DOI: 10.1002/ange.201602932.

Amuthavalli A., Prakash B., Thirugnanasampandan R., Gogulramnath M., Bhuvaneswari G., Velmurugan R. Synthesis, molecular docking, antibacterial, antioxidant, and cytotoxicity activities of novel pyrido-cyclopenta[b]indole analogs. Synth. Commun. 2020. V. 50. N 8. P. 1176–1189. DOI: 10.1080/00397911.2020.1733610.

Pçhler R., Krahn J.H., van den Boom J., Dobrynin G., Kaschani F., Eggenweiler H.-M., Zenke F.T., Kaiser M., Meyer H. A Non-Competitive Inhibitor of VCP/p97 and VPS4 Reveals Conserved Allosteric Circuits in Type I and II AAA ATPases. Angew. Chem. Int. Ed. 2018. V. 57. N 6. P. 1576–1580. DOI: 10.1002/anie.201711429.

Mikhailov M.S., Gudim N.S., Knyazeva E.A., Tanaka E., Zhang L., Mikhalchenko L.V., Robertson N., Rakitin O.A. 9-(p-Tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole – a new donor building-block in the design of sensitizers for dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem. 2020. V. 391. P. 112333. DOI: 10.1016/j.jphotochem.2019.112333.

Britel O., Fitri A., Benjelloun A.T., Slimi A., Benzakour M., Mcharfi M. Theoretical design of new carbazole based organic dyes for DSSCs applications. A DFT/TD-DFT insight. J. Photochem. Photobiol. A: Chem. 2022. V. 429. P. 113902. DOI: 10.1016/j.jphotochem.2022.113902.

Matsui M., Tsuzuki Y., Kubota Y., Funabiki K., Inuzuka T., Manseki K., Higashijima S., Miura H., Sato H., Yo-shida T. Novel indoline dye tetrabutylammonium carboxylates attached with a methyl group on the cyclopentane ring for dyesensitized solar cells. Tetrahedron. 2018. V. 74. N 40. P. 5867–5878. DOI: 10.1016/j.tet.2018.08.006.

Kotha S., Cheekatla S.R., Chinnam A.K., Jain T. Design and synthesis of polycyclic bisindoles via Fischer indoliza-tion and ringclosing metathesis as key steps. Tetrahedron Lett. 2016. V. 57. N 50. P. 5605–5607. DOI: 10.1016/j.tetlet.2016.10.112.

Vivekanand T., Satpathi B., Bankar S.K., Ramasastry S.S.V. Recent metalcatalysed approaches for the synthesis of cyclopenta[b]indoles. RSC Adv. 2018. V. 8. N 33. P. 18576-18588. DOI: 10.1039/c8ra03480j.

Gataullin R.R. Synthesis of Compounds Containing a Cycloalka[b]indole Fragment. Russ. J. Org. Chem. 2009. V. 45. N 3. P. 321–354. DOI: 10.1134/S1070428009030014.

Gataullin R.R. Advances in the synthesis of cycloalka[b]indoles. Russ. J. Org. Chem. 2013. V. 49. N 2. P. 151-185. DOI: 10.1134/S1070428013020012.

Gataullin R.R. New syntheses of cycloalka[b]indoles. Russ. J. Org. Chem. 2016. V. 52. N 9. P. 1227-1263. DOI: 10.1134/S1070428016090013.

Haak E. Modern Annulation Strategies for the Synthesis of Cyclo[b]fused Indoles. Synlett. 2019. V. 30. N 3. P. 245-251. DOI: 10.1055/s-0037-1610336.

Kam T.-S., Yoganathan K., Chuah C.-H. Lundurines A, B and C, new indole alkaloids with a novel carbon skele-ton containing a cyclopropyl moiety. Tetrahedron Lett. 1995. V. 36. N 5. P. 759-762. DOI: 10.1016/0040-4039(94)02361-E.

Kam T.-S., Lim K.-H., Yoganathan K., Hayashi M., Komiyama K. Lundurines A–D, cytotoxic indole alkaloids incorporating a cyclopropyl moiety from Kopsia tenuis and revision of the structures of tenuisines A–C. Tet-rahedron. 2004. V. 60. N 47. P. 10739–10745. DOI: 10.1016/j.tet.2004.08.091.

Huang H. X., Jin S. J., Gong J., Zhang D., Song H., Qin Y. Studies of a Diazo Cyclopropanation Strategy for the Total Synthesis of (-)-Lundurine A. Chem. Eur. J. 2015. 21. N 38. P. 13284-13290. DOI: 10.1002/chem.201502011.

Zhang X., Du C., Zhang H., Li X.-C., Wang Y.-L., Niu J.-L., Song M.-P. Metal-Free Blue-Light-Mediated Cyclopropanation of Indoles by Aryl(diazo)acetates. Synthesis. 2019. V. 51. N 4. P. 889–898. DOI: 10.1055/s-0037-1610668.

Wasilewska A., Woźniak B. A., Doridot G., Piotrowska K., Witkowska N., Retailleau P., Six Y. Synthesis of Pol-ycyclic Aminocyclobutane Systems by the Rearrangement of N-(ortho-Vinylphenyl) 2-Azabicyclo[3.1.0]hexane De-rivatives. Chem. Eur. J. 2013. V. 19. N 35. P. 11759–11767. DOI: 10.1002/chem.201300871.

Ghisu L., Melis N., Secci F., Caboni P., Frongia A. Synthesis of quaternary α-benzyl- and α-allyl-α-methylaminocyclobutanones. Tetrahedron. 2016. V. 72. N 50. P. 8201–8209. DOI: 10.1016/j.tet.2016.10.024.

Jia M., Monari M., Yang Q.-Q., Bandini M. Enantioselective gold catalyzed dearomative [2+2]-cycloaddition between indoles and allenamides. Chem. Commun. 2015. V. 51. N 12. P. 2320–2323. DOI: 10.1039/C4CC08736D.

Neyyappadath R.M., Greenhalgh M.D., Cordes D.B., Slawin A.M.Z., Smith A.D. Synthesis of Fused Indoline-Cyclobutanone Derivatives via an Intramolecular [2+2] Cycloaddition. Eur. J. Org. Chem. 2019. № 31–32. P. 5169−5174. DOI: 10.1002/ejoc.201900326.

Nandi R.K., Guillot R., Kouklovsky C., Vincent G. Synthesis of 3,3-Spiroindolines via FeCl3 Mediated Cycliza-tion of Aryl- or Alkene-Containing 3 Substituted N−Ac Indoles. Org. Lett. 2016. V. 18. P. 1716−1719. DOI: 10.1021/acs.orglett.6b00174.

Kim K.-M., Hong J.-I. Design of high-performance dyesensitized solar cells by variation of the dihedral angles of dyes. Tetrahedron. 2016. V. 72. N 51. P. 8387−8392. DOI: 10.1016/j.tet.2016.10.057.

Scarpi D., Petrović M., Fiser B., Gómez-Bengoa E., Occhiato E.G. Construction of Cyclopenta[b]indol-1-ones by a Tandem Gold(I)-Catalyzed Rearrangement/Nazarov Re-action and Application to the Synthesis of Bruceolline H. Org. Lett. 2016. V. 18. P. 3922–3925. DOI: 10.1021/acs.orglett.6b01990.

Scarpi D., Faggi C., Occhiato E.G. Total Synthesis of Bruceolline I. J. Nat. Prod. 2017. V. 80. N 8. P. 2384−2388. DOI: 10.1021/acs.jnatprod.7b00311.

Gaikwad D. Unprecedented total synthesis of bruceolline D, E, and H. Synth. Commun. 2020. V. 50. N 20. P. 3158-3164. DOI: 10.1080/00397911.2020.1795199.

Lu P., Feng C., Loh T.-P. Divergent Functionalization of Indoles with Acryloyl Silanes via Rhodium-Catalyzed C−H Activation. Org. Lett. 2015. V. 17. N 13. P. 3210−3213. DOI: 10.1021/acs.orglett.5b01258.

Vickerman K.L., Stanley L.M. Catalytic, Enantioselective Synthesis of Polycyclic Nitrogen, Oxygen, and Sulfur Heterocycles via Rh-Catalyzed Alkene Hydroacylation. Org. Lett. 2017. V. 19. N 19. P. 5054−5057. DOI: 10.1021/acs.orglett.7b02230.

Capretz Agy A., Rodrigues M.T.Jr., Zeoly L.A., Simoni D. A., Coelho F. Palladiummediated oxidative annulation of δ-indolyl-α,β-unsaturated compounds towards the synthesis of cyclopenta[b]indoles and heterogeneous hydrogenation to access fused indolines. J. Org. Chem. 2019. V. 84. N 9. P. 5564–5581. DOI:10.1021/acs.joc.9b00505.

Xu M.-M., Wang H.-Q., Wan Y., Wang S.-L., Shi F. Enantioselective Construction of сyclopenta[b]indole Scaffolds via the Catalytic Asymmetric [3+2] Cycloaddition of 2 Indolylmethanols with p Hydroxystyrenes. J. Org. Chem. 2017. V. 82. N 19. P. 10226−10233. DOI: 10.1021/acs.joc.7b01731.

Li Y., Tur F., Nielsen R.P., Jiang H., Jensen F., Jørgensen K.A. Enantioselective Formal [4+2] Cycloadditions to 3-Nitroindoles by Trienamine Catalysis: Synthesis of Chi-ral Dihydrocarbazoles. Angew. Chem. Int. Ed. 2016. V. 55. N 3. P. 1020–1024. DOI: 10.1002/anie.201509693.

Sun M., Zhu Z.-Q., Gu L., Wan X., Mei G.-J., Shi F. Catalytic Asymmetric Dearomative [3+2] Cycloaddition of Electron-Deficient Indoles with All-Carbon 1,3-Dipoles. J. Org. Chem. 2018. V. 83. N 4. P. 2341–2348. DOI: 10.1021/acs.joc.7b03259.

Zhang J.-Q., Tong F., Sun B.-B., Fan W.-T., Chen J.-B., Hu D., Wang X.-W. Pd-Catalyzed Asymmetric Dearoma-tive Cycloaddition for Construction of Optically Active Pyrroloindoline and Cyclopentaindoline Derivatives: Ac-cess to 3a-Aminopyrroloindolines. J. Org. Chem. 2018. V. 83. N 5. P. 2882–2891. DOI: 10.1021/acs.joc.8b00046.

Gee Y.S., Rivinoja D.J., Wales S.M., Gardiner M.G., Ryan J.H., Hyland C.J.T. Pd-Catalyzed Dearomative [3+2] Cycloaddition of 3 Nitroindoles with 2 Vinylcyclopropane-1,1-dicarboxylates. J. Org. Chem. 2017. V. 82. N 24. P. 13517−13529. DOI: 10.1021/acs.joc.7b02624.

Sakthivel S., Balamurugan R. Annulation of a Highly Functionalized Diazo Building Block with Indoles under Sc(OTf)3/Rh2(OAc)4 Multicatalysis through Michael Addition/Cyclization Sequence. J. Org. Chem. 2018. V. 83. N 19. P. 12171−12183. DOI: 10.1021/acs.joc.8b02127.

Jing C., Cheng Q.-Q., Deng Y., Arman H., Doyle M.P. Highly Regio- and Enantioselective Formal [3+2]-Annulation of Indoles with Electrophilic Enol Carbene In-termediates. Org. Lett. 2016. V. 18. N 18. P. 4550−4553. DOI: 10.1021/acs.orglett.6b02192.

Wu C.-Y., Yu Y.-N., Xu M.-H. Construction of Chiral Tricyclic Indoles through a Rhodium-Catalyzed Asymmet-ric Arylation Protocol. Org. Lett. 2017. V. 19. N 2. P. 384−387. DOI: 10.1021/acs.orglett.6b03585.

Fan X., Yu L.-Z., Wei Y., Shi M. Cascade Amination/Cyclization/Aromatization Process for the Rapid Con-struction of [2,3‑c]Dihydrocarbazoles and [2,3‑c]Carbazoles. Org. Lett. 2017. V. 19. N 17. P. 4476−4479. DOI: 10.1021/acs.orglett.7b01957.

Cao B., Wei Y., Shi M. An atmosphere and light tuned highly diastereoselective synthesis of cyclobu-ta/penta[b]indoles from anilinetethered alkylidenecyclopropanes with alkynes. Chem. Commun. 2018. V. 54. N 23. P. 2870–2873. DOI: 10.1039/C8CC00180D.

Li Y., Wang R., Wang T., Cheng X.-F., Zhou X., Fei F., Wang X.-S. A Copper-Catalyzed Aerobic [1,3]-Nitrogen Shift through Nitrogen-Radical 4-exotrig Cyclization. Angew. Chem. Int. Ed. 2017. V. 56. N 48. P. 15436 –15440. DOI: 10.1002/anie.201709894.

Dilek Ö., Patir S., Ertürk E. Enantioselective Synthesis of 1- and 4-Hydroxytetrahydrocarbazoles through Asymmetric Transfer Hydrogenation. Synlett. 2019. V. 30. N 1. P. 69−72. DOI: 10.1055/s-0037-1610351.

Abualnaja M., Waddell P.G., Clegg W., Hall M.J. Synthesis of pentacyclic pyrrolo[3,4-a]carbazole-1,3(2H)-diones via an intermolecular Diels–Alder, intramolecular carbonylene reaction strategy. Tetrahedron. 2016. V. 72. N 38. P. 5798−5806. DOI: 10.1016/j.tet.2016.08.008.

Abualnaja M.M., Cowell J., Jolliffe J.D., Wills C., Waddell P.G., Clegg W., Hall M.J. Diastereoselective re-aromative etherifications and aminations of 2,3,9,9a-tetrahydro-1H-carbazoles. Tetrahedron. 2021. V. 89. P. 132144. DOI: 10.1016/j.tet.2021.132144.

Yang R.-Y., Sun J., Tao Y., Sun Q., Yan C.-G. TfOH-Catalyzed One-Pot Domino Reaction for Diastereoselec-tive Synthesis of Polysubstituted Tetrahydrospi-ro[carbazole-1,3′-indoline]s. J. Org. Chem. 2017. V. 82. N 24. P. 13277−13287. DOI: 10.1021/acs.joc.7b02397.

Zhang L.-L., Zhang J.-W., Xiang S.-H., Guo Z., Tan B. Remote Control of Axial Chirality: Synthesis of Spiroox-indole−Urazoles via Desymmetrization of ATAD. Org. Lett. 2018. V. 20. N 19. P. 6022−6026. DOI: 10.1021/acs.orglett.8b02361.

Liu Y.-P., Yue G. G.-L., Lee J. K.-M., Feng T., Zhao Y.-L., Li Y., Lau С. B.-S., Luo X.-D. Melodinine V, an antitumor bisindole alkaloid with selective cytotoxicity from Melodinus henryi. Bioorg. Med. Chem. Lett. 2016. V. 26. N 20. P. 4895–4898. DOI: 10.1016/j.bmcl.2016.09.023.

Mandal T., Chakraborti G., Karmakar S., Dash J. Divergent and Orthogonal Approach to Carbazoles and Pyri-doindoles from Oxindoles via Indole Intermediates. Org. Lett. 2018. V. 20. N 16. P. 4759–4763. DOI: 10.1021/acs.orglett.8b01827.

Stadlbauer W., Rieder D., Schuiki B., Kappe T. Syntheses, substitution and cyclization reactions of 7a,8,9,10,11a-hexahydro-pyrido[3,2,1-jk]carbazoles with a strychnos alkaloids partial structure. 20th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-20) November 1−30, 2016. https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/75405061

Krüll J., Hubert A., Nebel N., Prante O., Heinrich M.R. Microwave-Assisted Rapid One-Pot Synthesis of Fused and Non-Fused Indoles and 5-[18F]Fluoroindoles from Phenylazocarboxylates. Chem. Eur. J. 2017. V. 23. N 64. P. 16174–16178. DOI: 10.1002/chem.201703890.

Alpers D., Hoffmann F., Brasholz M. Visible-Light Photolysis of Allyl Zirconocenes: A Photoinduced Three-Component Radical (4+2)-Cyclization–Allylation Reaction. Synlett. 2017. V. 28. N 8. P. 919-923. DOI: 10.1055/s-0036-1588957.

Nanda L.N., Rangari V.A. TfOH catalyzed synthesis of 1-substituted tetrahydrocarbazoles. Tetrahedron Lett. 2018. V. 59. N 33. P. 3194–3197. DOI: 10.1016/j.tetlet.2018.07.023.

Daniels B.E., Ni J., Reisman S.E. Synthesis of Enantioenriched Indolines by a Conjugate Addi-tion/Asymmetric Protonation/Aza-Prins Cascade Reaction. Angew. Chem. Int. Ed. 2016. V. 55. N 10. P. 3398–3402. DOI: 10.1002/ange.201510972.

Zhu Y., He W., Wang W., Pitsch C.E., Wang X., Wang X. Enantioselective Tandem Cyclization of Alkyne-Tethered Indoles Using Cooperative Silver(I)/Chiral Phosphoric Acid Catalysis. Angew. Chem. Int. Ed. 2017. V. 56. N 40. P. 12206–12209. DOI: 10.1002/anie.201706694.

Tharra P., Baire B. Regioselective Cyclization of (Indol-3-yl)pentyn-3-ols as an Approach to (Tetrahy-dro)carbazoles. Org. Lett. 2018. V. 20. N 4. P. 1118−1121. DOI: 10.1021/acs.orglett.8b00042.

Liu Q.-J., Yan W.-G., Wang L., Zhang X.P., Tang Y. One-Pot Catalytic Asymmetric Synthesis of Tetrahydro-carbazoles. Org. Lett. 2015. V. 17. N 16. P. 4014−4017. DOI: 10.1021/acs.orglett.5b01909.

Ren J.-W., Zhou Z.-F., Xiao J.-A., Chen X.-Q., Yang H. Acid-Relayed Organocatalytic exo-Diels–Alder Cycloaddi-tion of Cyclic Enones with 2-Vinyl-1H-indoles. Eur. J. Org. Chem. 2016. N 7. P. 1264–1268. DOI: 10.1002/ejoc.201501619.

Pirovano V., Arpini E., Dell’Acqua M., Vicente R., Ab-biati G., Rossi E. Gold(I)-Catalyzed Synthesis of Tetrahy-drocarbazoles via Cascade [3,3]-Propargylic Rearrange-ment/[4+2] Cycloaddition of Vinylindoles and Propargylic Esters. Adv. Synth. Catal. 2016. V. 358. N 3. P. 403–409. DOI: 10.1002/adsc.201500913.

Gao R.-D., Xu Q.-L., Dai L.-X., You S.-L. Pd-Catalyzed Cascade Allylic Alkylation and Dearomatization Reactions of Indoles with Vinyloxirane. Org. Biomol. Chem. 2016. V. 14. N 34. P. 8044-8046. DOI: 10.1039/C6OB01523A.

Qiu Y., Dlugosch M., Liu X., Khan F., Ward J.S., Lan P., Banwell M.G. Reductive Cyclization of o‑Nitroarylated-α,β-unsaturated Aldehydes and Ketones with TiCl3/HCl or Fe/HCl Leading to 1,2,3,9-Tetrahydro‑4H‑carbazol-4-ones and Related Heterocycles. J. Org. Chem. 2018. V. 83. N 19. P. 12023−12033. DOI: 10.1021/acs.joc.8b01940.

Xu D., Zhao Y., Song D., Zhong Z., Feng S., Xie X., Wang X., She X. (3+2)-Annulation of p‑Quinamine and Aryne: A Strategy To Construct the Multisubstituted Hy-drocarbazoles. Org. Lett. 2017. V. 19. N 13. P. 3600−3603. DOI: 10.1021/acs.orglett.7b01578.

Yarlagadda S., Sankaram G.S., Balasubramanian S., Reddy B.V.S. Asymmetric Robinson Annulation of 3‑Indolinone-2-carboxylates with Cyclohexenone: Access to Chiral Bridged Tricyclic Hydrocarbazoles. Org. Lett. 2018. V. 20. N 14. P. 4195–4199. DOI: 10.1021/acs.orglett.8b01575.

Hansen C.L., Ohm R.G., Olsen L.B., Ascic E., Tanner D., Nielsen T.E. Catalytic Enantioselective Synthesis of Tetrahydocarbazoles and Exocyclic Pictet−Spengler-Type Reactions. Org. Lett. 2016. V. 18. N 23. P. 5990−5993. DOI: 10.1021/acs.orglett.6b02718.

Dilek Ö., Patir S., Ertürk E. Enantioselective Synthesis of 1- and 4-Hydroxytetrahydrocarbazoles through Asymmetric Transfer Hydrogenation. Synlett. 2019. V. 30. N 1. P. 69–72. DOI: 10.1055/s-0037-1610351.

Stempel E., Gaich T. Cyclohepta[b]indoles: A Privileged Structure Motif in Natural Products and Drug Design. Acc. Chem. Res. 2016. V. 49. N 11. P. 2390–2402. DOI: 10.1021/acs.accounts.6b00265.

Cheng B., Volpin G., Morstein J., Trauner D. Total Synthesis of (±)−Exotine B. Org. Lett. 2018. V. 20. N 14. P. 4358−4361. DOI: 10.1021/acs.orglett.8b01817.

Pirovano V., Brambilla E., Moretti A., Rizzato S., Abbiati G., Nava D., Rossi E. Synthesis of Cyclohep-ta[b]indoles by (4 + 3) Cycloaddition of 2 Vinylindoles or 4H Furo[3,2 b]indoles with Oxyallyl Cations. J. Org. Chem. 2020. V. 85. N 5. P. 3265−3276. DOI: 10.1021/acs.joc.9b03117.

Takeda T., Harada S., Okabe A., Nishida A. Cyclohepta[b]indole Synthesis through [5 + 2] Cycloaddition: Bi-functional Indium(III)-Catalyzed Stereoselective Construction of 7 Membered Ring Fused Indoles. J. Org. Chem. 2018. V. 83. N 19. P. 11541−11551. DOI: 10.1021/acs.joc.8b01407.

Tymann D.C., Benedix L., Iovkova L., Pallach R., Henke S., Tymann D., Hiersemann M. Photochemical Ap-proach to the Cyclohepta[b ]indole Scaffold by Annulative Two-Carbon Ring-Expansion. Chem. Eur. J. 2020. V. 26. N 52. P. 11974–11978. DOI: 10.1002/chem.202002581.

Mishra U.K., Yadav S., Ramasastry S.S.V. One-Pot Multicatalytic Approaches for the Synthesis of Cyclohep-ta[b]indoles, Indolotropones, and Tet-rahydrocarbazoles. J. Org. Chem. 2017. V. 82. N 13. P. 6729–6737. DOI: 10.1021/acs.joc.7b00865.

Zhang J., Shao J., Xue J., Wang Y., Li Y. One pot hydroamination/[4+3] cycloaddition: synthesis towards the cyclohepta[b]indole core of silicine and ervatamine. RSC Adv. 2014. V. 4. N 109. P. 63850–63854. DOI: 10.1039/c4ra13249a.

Liu J., Wang L., Wang X., Xu L., Hao Z., Xiao J. Fluorinated alcohol-mediated [4+3] cycloaddition reaction of indolyl alcohols with cyclopentadiene. Org. Biomol. Chem. 2016. V. 14. N 48. P. 11510–11517. DOI: 10.1039/c6ob01953f.

Gelis C., Levitre G., Merad J., Retailleau P., Neuville L., Masson G. Highly Diastereo- and Enantioselective Synthesis of Cyclohepta[b]indoles by Chiral-Phosphoric-Acid-Catalyzed (4+3) Cycloaddition. Angew. Chem. Int. Ed. 2018. V. 57. N 37. P. 12121–2125. DOI: 10.1002/anie.201807069.

Liang X., Zhang T.-Y., Meng C.-Y., Li X.-D., Wei K., Yang Y.-R. Total Synthesis of (−)-Actinophyllic Acid En-abled by a Key Dual Ir/Amine-Catalyzed Allylation. Org. Lett. 2018. V. 20. N 15. P. 4575−4578. DOI: 10.1021/acs.orglett.8b01861.

Carroll A.R., Hyde E., Smith J., Quinn R.J., Guymer G., Forster P.I. Actinophyllic Acid, a Potent Indole Alka-loid Inhibitor of the Coupled Enzyme Assay Carboxypeptidase U/Hippuricase from the Leaves of Alstonia ac-tinophylla (Apocynaceae). J. Org. Chem. 2005. V. 70. N 3. P. 1096−1099. DOI: 10.1021/jo048439n.

Wentrup C., Becker J. Azulene–Naphthalene-Type Rearrangements in Benz[a]azulene and Cyclohepta[b]indole. Chem. Eur. J. 2016. V. 22. N 39. P. 13835−13839. DOI: 10.1002/chem.201603389.

Sokolov V.B., Aksinenko A.Y., Epishina T.A., Goreva T.V. Catalytic alkylation of cycloalkaneindoles and tetra-hydro-γ-carboline with 9-oxiranylmethylcarbazole. Russ. J. Gen. Chem. 2016. V. 86. N 8. P. 1827–1831. DOI: 10.1134/S1070363216080089.

Okabe A., Harada S., Takeda T., Nishida A. One-Pot Synthesis of Cycloocta[b]indole through Formal [5+3] Cy-cloaddition Using Donor-Acceptor Cyclopropanes. Eur. J. Org. Chem. 2019. № 24. P. 3916−3920. DOI: 10.1002/ejoc.201900610.

Sokolnikova T.V., Proidakov A.G., Kizhnyaev V.N. 1,4,5-Trisubstituted 1,2,3-triazoles in the synthesis of bi- and polycyclic compounds. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 8. P. 6-14. DOI: 10.6060/ivkkt.20226508.6597.

Yunnikova L.P., Akent’eva T.A., Suvorova Yu.V., Danilova E.A., Islyaikin M.K. Tropylated 2-aminopyrimidines. Structural particuliarities and biological activity. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 7. P. 35-44. DOI: 10.6060/ivkkt.20226507.6562.

Опубликован
2022-12-20
Как цитировать
Gataullin, R. R. (2022). НОВЫЕ ДОСТИЖЕНИЯ В СИНТЕЗЕ ЦИКЛОАЛКА[b]ИНДОЛОВ. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 66(2), 6-22. https://doi.org/10.6060/ivkkt.20236602.6720
Раздел
Обзорные статьи