ОСНОВЫ МЕТОДА СИНТЕЗА МИКРОГЕЛЕЙ МЕТОДОМ ОБРАТНОЙ ЭМУЛЬСИИ

  • Denis A. Burin Пермский национальный исследовательский политехнический университет
  • Yulia A. Rozhkova Пермский национальный исследовательский политехнический университет
  • Alexander L. Kazantsev Пермский национальный исследовательский политехнический университет
Ключевые слова: микрогель, гидрогель, гель, полимер, трехмерная структура, полиакриламид

Аннотация

Микрогели являются уникальным классом веществ, которые сочетают в себе свойства макромолекул, поверхностно-активных веществ и коллоидных частиц. Микрогели широко применяются для очистки сточных вод, в системах доставки лекарственных средств, для сушки биодизеля, в технологии регенерации тканей и имплантации, в хроматографии и др. На данный момент разработаны такие методы синтеза микрогелей, как осадительная и суспензионная полимеризация, эмульсионный метод и др. Все эти методы фактически уже стали классикой синтеза микрогелей. Данная публикация является обзором работ по методике синтеза микрогелей на основе полиакриламида и его производных методом обратной эмульсии. Этот метод выбран в связи с рядом преимуществ, таких как высокая степень конверсии мономеров, возможность контроля гранулометрического состава частиц геля во время синтеза, упрощенная процедура сушки готового продукта и др. В статье описаны особенности синтеза, влияющие на размер и форму микрогелей, описаны основные факторы, которые необходимо предусмотреть при планировании синтеза в обратной эмульсии; показана разница между макроэмульсией, наноэмульсией и микроэмульсией. Также приведены особенности синтеза микрогеля на основе акриламида и его производных: приведены основные инициаторы свободно-радикальной полимеризации; мономеры, влияющие на свойства микрогеля. Данная статья может быть интересной специалистам, которые только начинают исследования в данном направлении. После изучения публикации читатель сможет спланировать и реализовать эксперимент по синтезу микрогелей на основе полиакриламида методом обратной эмульсии.

Для цитирования:

Бурин Д.А., Рожкова Ю.А., Казанцев А.Л. Основы метода синтеза микрогелей методом обратной эмульсии. Изв. вузов. Химия и хим. технология. 2023. Т. 66. Вып. 3. С. 6-17. DOI: 10.6060/ivkkt.20236603.6732.

Литература

Zhilin D.M., Pich A. Nano- And Microgels: A Review for Educators. Chemistry Teacher International. Walter de Gruyter GmbH. 2021. P. 155–167. DOI: 10.1515/cti-2020-0008.

Kang W., Kang X., Lashari Z.A., Li Z., Zhou B., Yang H., Sarsenbekuly B., Aidarova S. Progress of Polymer Gels for Conformance Control in Oilfield. Adv. Colloid. Interface Sci. 2021. V. 289. P. 102363. DOI: 10.1016/j.cis.2021.102363.

Rozhkova Y.A., Burin D.A., Galkin S.V., Yang H. Review of Microgels for Enhanced Oil Recovery: Properties and Cases of Application. Gels. 2022. V. 8. N 2. DOI: 10.3390/gels8020112.

Plamper F.A., Richtering W. Functional Microgels and Microgel Systems. Acc. Chem. Res. 2017. V. 50. N 2. P. 131–140. DOI: 10.1021/acs.accounts.6b00544.

Li L., Zhang M., Jiang W., Yang P. Study on the Efficacy of Sodium Alginate Gel Particles Immobilized Microorganism SBBR for Wastewater Treatment. J. Environ. Chem. Eng. 2022. V. 10. N 2. DOI: 10.1016/j.jece.2022.107134.

Yan X. Y., Wang Q., Wang Y., Fu Z.J., Wang Z.Y., Mamba B., Sun S.P. Designing Durable Self-Cleaning Nan-ofiltration Membranes via Sol-Gel Assisted Interfacial Polymerization for Textile Wastewater Treatment. Sep. Purif. Technol. 2022. V. 289. P. 120752. DOI: 10.1016/j.seppur.2022.120752.

Fardous J., Yamamoto E., Omoso Y., Nagao S., Inoue Y., Yoshida K., Ikegami Y., Zhang Y., Shirakigawa N., Ono F., Ijima H. Development of a Gel-in-Oil Emulsion as a Transdermal Drug Delivery System for Successful Delivery of Growth Factors. J. Biosci. Bioeng. 2021. V. 132. N 1. P. 95–101. DOI: 10.1016/j.jbiosc.2021.03.015.

Fardous J., Omoso Y., Joshi A., Yoshida K., Patwary M.K.A., Ono F., Ijima H. Development and Characterization of Gel-in-Water Nanoemulsion as a Novel Drug Delivery System. Mater. Sci. and Eng. C. 2021. V. 124. P. 112076. DOI: 10.1016/j.msec.2021.112076.

Shimada G.B., Cestari A. Synthesis of Heterogeneous Cata-lysts by the Hydrolytic Sol-Gel Method for the Biodiesel Production. Renew Energy. 2020. V. 156. P. 389–394. DOI: 10.1016/j.renene.2020.04.095.

Salim S. M., Izriq R., Almaky M.M., Al-Abbassi A.A. Synthesis and Characterization of ZnO Nanoparticles for the Production of Biodiesel by Transesterification: Kinetic and Thermodynamic Studies. Fuel. 2022. V. 321. P. 124135. DOI: 10.1016/j.fuel.2022.124135.

Feng Q., Li D., Li Q., Cao X., Dong H. Microgel Assembly: Fabrication, Characteristics and Application in Tissue Engi-neering and Regenerative Medicine. Bioact. Mater. 2022. V. 9. P. 105–119. DOI: 10.1016/j.bioactmat.2021.07.020.

Qazi T.H., Burdick J.A. Granular Hydrogels for Endogenous Tissue Repair. Biomat. Biosyst. 2021. V. 1. P. 100008. DOI: 10.1016/j.bbiosy.2021.100008.

Wang K., Wang Z., Hu H., Gao C. Supramolecular Microgels/Microgel Scaffolds for Tissue Repair and Regeneration. Supramolec. Mater. 2022. V. 1. P. 100006. DOI: 10.1016/j.supmat.2021.100006.

Tian S., Yu B., Du K., Li Y. Purification of Wheat Germ Albumin Hydrolysates by Membrane Separation and Gel Chromatography and Evaluating Their Antioxidant Activities. LWT. 2022. V. 161. P. 113365. DOI: 10.1016/j.lwt.2022.113365.

Thorne J.B., Vine G.J., Snowden M.J. Microgel Applications and Commercial Considerations. Colloid. Polym. Sci. 2011. V. 289. N 5–6. P. 625–646. DOI: 10.1007/s00396-010-2369-5.

Anakhov M.V., Gumerov R.A., Potemkin I.I. Stimuli-Responsive Aqueous Microgels: Properties and Applications. Mendeleev Commun. 2020. V. 30. N 5. P. 555–562 (in Rus-sian). DOI: 10.1016/j.mencom.2020.09.002.

Fernández-Barbero A., Suárez I.J., Sierra-Martín B., Fernández-Nieves A., de las Nieves, F.J., Marquez M., Rubio-Retama, J., López-Cabarcos E. Gels and Microgels for Nanotechnological Applications. Adv. Colloid Interface Sci. 2009. V. 147-148. P. 88–108. DOI: 10.1016/j.cis.2008.12.004.

Wang Y., Guo L., Dong S., Cui J., Hao J. Microgels in Biomaterials and Nanomedicines. Adv. Colloid. Interface Sci. 2019. V. 266. P. 1–20. DOI: 10.1016/j.cis.2019.01.005.

Sjöblom J., Lindberg R., Friberg S.E. Microemulsions — Phase Equilibria Characterization, Structures, Applications and Chemical Reactions. Adv. Colloid. Interface Sci. 1996. V. 65. P. 125–287. DOI: 10.1016/0001-8686(96)00293-X.

Hamzah Y. Bin, Hashim S., Rahman W.A.W.A. Synthesis of Polymeric Nano/Microgels: A Review. J. Polymer Res. 2017. V. 24. P. 134. DOI: 10.1007/s10965-017-1281-9.

Zhuang J., Gordon M.R., Ventura J., Li L., Thayumanavan S. Multi-Stimuli Responsive Macromolecules and Their Assemblies. Chem. Soc. Rev. 2013. V. 42. N 17. P. 7421–7435. DOI: 10.1039/C3CS60094G.

Kang W.L., Hu L.L., Zhang X.F., Yang R.M., Fan H.M., Geng J. Preparation and Performance of Fluorescent Polyacrylamide Microspheres as a Profile Control and Tracer Agent. Pet. Sci. 2015. V. 12. N 3. P. 483–491. DOI: 10.1007/s12182-015-0042-9.

Lovell P.A., Schork F.J. Fundamentals of Emulsion Polymerization. Biomacromolecules. 2020. V. 21. N 11. P. 4396–4441. DOI: 10.1021/acs.biomac.0c00769.

Ibragimov M.A. Possibilities Of Mini-Emulsion Polymerization For The Creation of Latexes and Polymers. Review. Vest. Kazan Tekhnol. Univ. 2012. V. 15. N 9. P. 119-126 (in Russian).

Di Mari S., Funke W., Haralson M.A., Hunkeler D., Joos-Müller B., Matsumoto A., Okay O., Otsu T., Powers A. C., Prokop A., Wang T.G., Whitesell R.R. Microgels-Intramolecularly Crossünked Macromolecules with a Globular Structure. In: Microencapsulation Microgels Iniferters. Berlin, Heidelberg: Springer. 1998. P. 139–234. DOI: 10.1007/3-540-69682-2_4.

Schulman J.H., Montagne J. Formation of Microemulsions by Amino Alkyl Alcohols. Ann. N. Y. Acad. Sci. 1961. V. 92. N 2. P. 366-371. DOI: 10.1111/j.1749-6632.1961.tb44987.x.

Calvo P., Vila-Jato J.L., Alonso M.J. Comparative in Vitro Evaluation of Several Colloidal Systems, Nanoparticles, Nanocapsules, and Nanoemulsions, as Ocular Drug Carriers. J. Pharm. Sci. 1996. V. 85. N 5. P. 530–536. DOI: 10.1021/js950474+.

Mcclements D. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter. 2012. V. 8. P. 1719–1729. DOI: 10.1039/C2SM06903B.

Reyes Y., Hamzehlou S., Leiza J.R. Ostwald. Ripening in Nano/Miniemulsions in the Presence of Two Costabilizers as Revealed by Molecular Dynamics Simulations. J. Mol. Liq. 2021. V. 335. DOI: 10.1016/j.molliq.2021.116152.

Boscán F., Barandiaran M.J., Paulis M. From Miniemulsion to Nanoemulsion Polymerization of Superhydrophobic Monomers through Low Energy Phase Inversion Temperature. J. Indust. Eng. Chem. 2018. V. 58. P. 1–8. DOI: 10.1016/j.jiec.2017.08.052.

Singh S., Pathak K., Bali V. Product Development Studies on Surface-Adsorbed Nanoemulsion of Olmesartan Medoxomil as a Capsular Dosage Form. AAPS Pharm. Sci. Tech. 2012. V. 13. N 4. P. 1212-1221. DOI: 10.1208/s12249-012-9847-7.

Rao J., Mcclements D. Lemon Oil Solubilization in Mixed Surfactant Solutions: Rationalizing Microemulsion & Nanoemulsion Formation. Food Hydrocoll. 2012. V. 26. P. 268–276. DOI: 10.1016/j.foodhyd.2011.06.002.

Huang Q., Yu H., Ru Q. Bioavailability and Delivery of Nutraceuticals Using Nanotechnology. J. Food. Sci. 2010. V. 75. N 1. DOI: 10.1111/j.1750-3841.2009.01457.x.

Kong M., Chen X.G., Kweon D.K., Park H.J. Investigations on Skin Permeation of Hyaluronic Acid Based Nanoemulsion as Transdermal Carrier. Carbohydr. Polym. 2011. V. 86. N 2. P. 837–843. DOI: 10.1016/j.carbpol.2011.05.027.

Anton N., Benoit J.P., Saulnier P. Design and Production of Nanoparticles Formulated from Nano-Emulsion Templates—A Review. J. Control. Rel. 2008. V. 128. N 3. P. 185–199. DOI: 10.1016/j.jconrel.2008.02.007.

Chime S.A., Attama A.A., Kenechukwu F.C. Nanoemul-sions — Advances in Formulation, Characterization and Applications in Drug Delivery. In: Application of Nanotechnolo-gy in Drug Delivery. 2014. P. 76-126. DOI: 10.5772/58673.

Crespy D., Landfester K. Miniemulsion Polymerization as a Versatile Tool for the Synthesis of Functionalized Polymers. Beilstein J. Org. Chem. 2010. V. 6. P. 1132–1148. DOI: 10.3762/bjoc.6.130.

Blythe P. J., Morrison B. R., Mathauer K., Sudol E.D., El-Aasser M.S. Polymerization of Miniemulsions Containing Predissolved Polystyrene and Using Hexadecane as Costabilizer. Langmuir. 2000. V. 16. P. 898–904. DOI: 10.021/la990126d.

Tcholakova S.S., Denkov N., Lips A. Comparison of Solid Particles, Globular Proteins and Surfactants as Emulsifiers. Phys. Chem. Chem. Phys. 2008. V. 10. N 12. P. 1608–1627. DOI: 10.1039/b715933c.

Dagtepe P., Chikán V. Quantized Ostwald Ripening of Colloidal Nanoparticles. J. Phys. Chem. C. 2010. V. 114. P. 16263–16269. DOI: 10.1021/jp105071a.

Ivanova E.M., Blagodatskikh I.V., Vasil’eva O.V., Barabanova A.I., Khokhlov A.R. Synthesis of Hydrophobically Modified Poly(Acrylamides) in Water-in-Oil Emulsions. Polymer Sci. Ser. A. 2008. V. 50. N 1. P. 9–17. DOI: 10.1134/S0965545X08010033.

Nushtaeva A.V., Vilkova N.G. Hydrophobization of silica particles by various cationic surfactants. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 3. P. 41–45 (in Russian). DOI: 10.6060/ivkkt.20216403.6321.

Abbasian M., Massoumi B., Mohammad-Rezaei R., Sa-madian H., Jaymand M. Scaffolding Polymeric Biomaterials: Are Naturally Occurring Biological Macromolecules More Appropriate for Tissue Engineering? Int. J. Biol. Mac-romol. 2019. V. 134. P. 673–694. DOI: 10.1016/j.ijbiomac.2019.04.197.

Seyfikar S., Asgharnejad-laskoukalayeh M., Jafari S. H., Goodarzi V., Salehi M. H., Zamanlui S. Introducing a New Approach to Preparing Bionanocomposite Sponges Based on Poly(Glycerol Sebacate Urethane) (PGSU) with Great Inter-connectivity and High Hydrophilicity Properties for Application in Tissue Engineering. Eur. Polym. J. 2022. V. 173. P. 111239. DOI: 10.1016/j.eurpolymj.2022.111239.

Pejman M., Dadashi Firouzjaei M., Aghapour Aktij S., Zolghadr E., Das P., Elliott M., Sadrzadeh M., Sanger-mano M., Rahimpour A., Tiraferri A. Effective Strategy for UV-Mediated Grafting of Biocidal Ag-MOFs on Poly-meric Membranes Aimed at Enhanced Water Ultrafiltration. Chem. Eng. J. 2021. V. 426. P. 130704. DOI: 10.1016/j.cej.2021.130704.

Yang Y.K., Li H., Wang F. Studies on the Water Resistance of Acrylic Emulsion Pressure-Sensitive Adhesives (PSAs). J. Adhes. Sci. Technol. 2003. V. 17. N 13. P. 1741–1750. DOI: 10.1163/156856103322538651.

Kratz K., Lapp A., Eimer W., Hellweg T. Volume Transi-tion and Structure of Triethyleneglycol Dimethacrylate, Ethylenglykol Dimethacrylate, and N,N′-Methylene Bis-Acrylamide Cross-Linked Poly(N-Isopropyl Acrylamide) Mi-crogels: A Small Angle Neutron and Dynamic Light Scattering Study. Colloids Surf. A. Physicochem. Eng. Asp. 2002. V. 197. N 1. P. 55–67. DOI: 10.1016/S0927-7757(01)00821-4.

Zhao L., Li Q., Xu X., Kong W., Li X., Su Y., Yue Q., Gao B. A Novel Enteromorpha Based Hydrogel Optimized with Box–Behnken Response Surface Method: Synthesis, Characterization and Swelling Behaviors. Chem. Eng. J. 2016. V. 287. P. 537–544. DOI: 10.1016/j.cej.2015.11.085.

Asmussen S.V., Giudicessi S.L., Erra-Balsells R., Vallo C.I. Synthesis of Silsesquioxanes Based in (3-Methacryloxypropyl)-Trimethoxysilane Using Methacrylate Monomers as Reactive Solvents. Eur. Polym. J. 2010. V. 46. N 9. P. 1815–1823. DOI: 10.1016/j.eurpolymj.2010.06.006.

Tang X., Yang H., Gao Y., Lashari Z. A., Cao C., Kang W. Preparation of a Micron-Size Silica-Reinforced Polymer Microsphere and Evaluation of Its Properties as a Plugging Agent. Colloids Surf. A. Physicochem. Eng. Asp. 2018. V. 547. P. 8–18. DOI: 10.1016/j.colsurfa.2018.03.034.

Chen Y., Geh J.L. Copolymers Derived from 7-Acryloyloxy-4-Methylcoumarin and Acrylates: 2. Reversible Photocrosslinking and Photocleavage. Polymer (Guildf). 1996. V. 37. N 20. P. 4481–4486. DOI: 10.1016/0032-3861(96)00300-X.

Yoshioka E., Kohtani S., Jichu T., Fukazawa T., Nagai T., Kawashima A., Takemoto Y., Miyabe H. Aqueous-Medium Carbon–Carbon Bond-Forming Radical Reactions Catalyzed by Excited Rhodamine B as a Metal-Free Organic Dye under Visible Light Irradiation. J. Org. Chem. 2016. V. 81. N 16. P. 7217–7229. DOI: 10.1021/acs.joc.6b01102.

Yang H., Hu L., Chen C., Zhao H., Wang P., Zhu T., Wang T., Zhang L., Fan H., Kang W. Influence Mecha-nism of Fluorescent Monomer on the Performance of Polymer Microspheres. J. Mol. Liq. 2020. V. 308. DOI: 10.1016/j.molliq.2020.113081.

Tolue S., Moghbeli M.R., Ghafelebashi S.M. Preparation of ASA (Acrylonitrile-Styrene-Acrylate) Structural Latexes via Seeded Emulsion Polymerization. Eur. Polym. J. 2009. V. 45. N 3. P. 714–720. DOI: 10.1016/j.eurpolymj.2008.12.014.

Tatry M.C., Galanopoulo P., Waldmann L., Lapeyre V., Garrigue P., Schmitt V., Ravaine V. Pickering Emulsions Stabilized by Thermoresponsive Oligo(Ethylene Glycol)-Based Microgels: Effect of Temperature-Sensitivity on Emulsion Stability. J. Colloid Interface Sci. 2021. V. 589. P. 96–109. DOI: 10.1016/j.jcis.2020.12.082.

Chelysheva L.V., Druzhinina T.V., Gal’braikh L.S. Role of Diethylaminoethylmethacrylate in Graft Polymerization to a Polycaproamide Fibre. Nauka Polymer. U.S.S.R. 1988. V. 30. N 9. P. 1947–1951 (in Russian). DOI: 10.1016/0032-3950(88)90043-3.

Khandelia T., Patel B.K., Das P., Manna S., Pandey J.K. Carbon Nanotube-Based Oil-Water Separation. In: Advances in Oil-Water Separation. Chap. 11. Elsevier. 2022. P. 195–206. DOI: 10.1016/B978-0-323-89978-9.00019-7.

Dixit A., Bag D.S. Highly Stretchable and Tough Thermo-Responsive Double Network (DN) Hydrogels: Composed of PVA-Borax and Poly (AM-Co-NIPAM) Polymer Networks. Eur. Polym. J. 2022. V. 175. P. 111347. DOI: 10.1016/j.eurpolymj.2022.111347.

Ren J., Li J., Xu Z., Du Z., Cheng F. Feasibility of Thermo-Sensitive P(NIPAM-MBA) Hydrogels as Novel Strip-ping Agents for Osmotic Membrane Distillation. J. Environ. Chem. Eng. 2021. V. 9. N 4. P. 105370. DOI: 10.1016/j.jece.2021.105370.

Wang Y., Qin J., Wei Y., Li C., Ma G. Preparation Strategies of Thermo-Sensitive P(NIPAM-Co-AA) Microspheres with Narrow Size Distribution. Powder Technol. 2013. V. 236. P. 107–113. DOI: 10.1016/j.powtec.2012.04.060.

Hearon K., Smith S.E., Maher C.A., Wilson T.S., Maitland D.J. The Effect of Free Radical Inhibitor on the Sensi-tized Radiation Crosslinking and Thermal Processing Stabilization of Polyurethane Shape Memory Polymers. Radiat. Phys. Chem. 2013. V. 83. P. 111–121. DOI: 10.1016/j.radphyschem.2012.10.007.

Barsbay M., Güven O. Nanostructuring of Polymers by Controlling of Ionizing Radiation-Induced Free Radical Polymerization, Copolymerization, Grafting and Crosslinking by RAFT Mechanism. Radiat. Phys. Chem. 2020. V. 169. DOI: 10.1016/j.radphyschem.2018.04.009.

Rudin A. Free-Radical Polymerization. In Elements of Polymer Science and Engineering (Second Edition). Chap. 6. San Diego: Acad. Press. 1999. P. 189–239. DOI: 10.1016/B978-012601685-7/50006-9.

Xu C., Gong S., Wu X., Wu Y., Liao Q., Xiong Y., Li Z., Tang H. High-Efficient Carbazole-Based Photo-Bleachable Dyes as Free Radical Initiators for Visible Light Polymeriza-tion. Dyes and Pigments. 2022. V. 198. DOI: 10.1016/j.dyepig.2021.110039.

Wan J., Fan B., Liu Y., Hsia T., Qin K., Junkers T., Teo B.M., Thang S.H. Room Temperature Synthesis of Block Copolymer Nano-Objects with Different Morphologies via Ultrasound Initiated RAFT Polymerization-Induced Self-Assembly (Sono-RAFT-PISA). Electronic Supplementary Information (ESI) Available: NMR, GPC, and DLS Data; TEM, Cryo-TEM and SEM Images. Polym. Chem. 2020. V. 11. N 21. P. 3564–3572. DOI: 10.1039/d0py00461h.

Parkatzidis K., Wang H.S., Truong N. P., Anastasaki A. Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020 Update. Chem. 2020. V. 6. N 7. P. 1575–1588. DOI: 10.1016/j.chempr.2020.06.014.

Flejszar M., Ślusarczyk K., Chmielarz P., Wolski K., Isse A.A., Gennaro A., Wytrwal-Sarna M., Oszajca M. Work-ing Electrode Geometry Effect: A New Concept for Fabrication of Patterned Polymer Brushes via SI-SeATRP at Ambient Conditions. Polymer (Guildf). 2022. V. 255. DOI: 10.1016/j.polymer.2022.125098.

de Bon F., Fonseca R.G., Lorandi F., Serra A.C., Isse A.A., Matyjaszewski K., Coelho, J.F.J. The Scale-up of Electrochemically Mediated Atom Transfer Radical Polymerization without Deoxygenation. Chem. Eng. J. 2022. V. 445. P. 136690. DOI: 10.1016/j.cej.2022.136690.

Fresco-Cala, B., Cárdenas S. Advanced Polymeric Solids Containing Nano- and Micro-Particles Prepared via Emulsion-Based Polymerization Approaches. A Review. Anal. Chim. Acta. 2022. V. 1208. P. 339669. DOI: 10.1016/j.aca.2022.339669.

Dunn A.S., Stevens M.P. Polymer Chemistry: An Introduction. New York: Oxford University Press. Polym. Int. 1991. V. 25. N 258.

Pokhriyal N.K., Sanghvi, P.G., Hassan P.A., Devi S. Transparent Nanolatexes by Polymerization of Precursor Emulsions. Eur. Polym. J. 2001. V. 37. N 8. P. 1695–1704. DOI: 10.1016/S0014-3057(01)00031-3.

Preussmann R., Ivankovic S., Landschütz C., Gimmy J., Flohr E., Griesbach, U. Carcinogene Wirkung von 13 Ar-yldialkyltriazenen an BD-Ratten. Zeitschrift für Krebsforschung und Klinische Onkologie. 1974. V. 81. N 3. P. 285–310. DOI: 10.1007/BF00305031.

Osgouei M.S., Khatamian M. Preparation of TiO2/Metalosilicate Composites via Acrylamide Gel Method and Investigation of Their Photocatalytic Performance for Degradation of Brown NG. Mater. Sci. Semicond Proc. 2022. V. 144. P. 106605. DOI: 10.1016/j.mssp.2022.106605.

Davidenko N., Peniche C., Sastre R., Román J.S. Photoinitiated Copolymerisation of Furfuryl Methacrylate and N,N-Dimethyl Acrylamide. Polymer (Guildf). 1998. V. 39. N 4. P. 917–921. DOI: 10.1016/S0032-3861(97)00407-2.

Distler D., Buschow K.H.J., Cahn R.W., Flemings M.C., Ilschner B., Kramer E.J., Mahajan S., Veyssière P. Emul-sion Polymerization. In: Encyclopedia of Materials: Science and Technology. 2001. P. 2769–2774. DOI: 10.1016/B0-08-043152-6/00493-9.

de Buruaga A.S., de la Cal J.C., Asua J. M. Continuous Inverse Microemulsion Polymerization. J. Appl. Polym. Sci. 1999. V. 72. P. 1341–1348. DOI: 10.1002/(SICI)1097-4628(19990606)72:10<1341::AID-APP15>3.0.CO;2-V.

Li G., Zhang G., Wang L., Ge J. Cationic Microgel Emulsion with a High Solid Content by a Multistep Addition Method in Inverse Microemulsion Polymerization. J. Appl. Polym. Sci. 2014. V. 131. N 15. P. 40585 (1-6). DOI: 10.1002/app.40585.

Baur E., Ruhrberg K., Woishnis W. Unsaturated Polyester Resins. In: Chemical Resistance of Thermosets. Plastics Design Library. William Andrew Publishing. 2018. P. 62–505. DOI: 10.1016/B978-0-12-814480-0.00003-X.

Kurenkov V.F., Abramova L.I. Homogeneous Polymerization of Acrylamide in Solutions. Polym. Plast. Technol. 1992. V. 31. P. 659–704. DOI: 10.1080/03602559208017774.

Sabhapondit A., Borthakur A., Haque I. Water Soluble Acrylamidomethyl Propane Sulfonate (AMPS) Copolymer as an Enhanced Oil Recovery Chemical. Energy Fuels. 2003. V. 17. P. 683–688. DOI: 10.1021/ef010253t.

Bond, A. J., Blount, C. G., Davies, S. N., Keese, R. F., Lai, Q. J., and K. R. Loveland. Novel Approaches to Profile Modification in Horizontal Slotted Liners at Prudhoe Bay, Alaska. SPE Annual Technical Conference and Exhibition. San Antonio, Texas. October 1997. DOI: 10.2118/38832-MS.

Griffin W.C. Classification of Surface-Active Agents by HLB. J. Soc. Cosmetic Chem. 1949. V. 1. P. 311–326.

Griffin W.C. Calculation of HLB Values of Non-Ionic Surfactants. J. Soc. Cosmet. Chem. 1954. V. 5. P. 249–256.

Blinov A.V. Nagdalyan A.A., Gvozdenko A.A., Golik A.B., Slyadneva K.S., Pirogov M.A. Investigation of the effect of synthesis parameters on the average hydrodynamic rdius of vitamin E micelles (alpha-tocopherol acetate). ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 7. P. 45–53 (in Russian). DOI: 10.6060/ivkkt.20226507.6571.

Davies J.T. A Quantitative Kinetic Theory the Emulsion Type. I. Physical Chemistry of the Emulsifying Agent. In Gas/Liquid and Liquid/Liquid Interfaces. In: Proceedings Second International Congress on Surface Activity. Butterworths London. 1957. P. 426–438.

Holmberg K., Yampolskaya G.P. Surfactants and Polymers in Aqueous Solutions [Electronic Resource]. M.: Binom. Lab. znaniy. 2013. 532 p. (in Russian).

Muller P. Glossary of Terms Used in Physical Organic Chemistry (IUPAC Recommendations 1994). Pure Appl. Chem. 1994. V. 66. N 5. P. 1077–1184. DOI: 10.1351/pac199466051077.

Ahmad Z., Shah A., Siddiq M., Kraatz H.B. Polymeric Micelles as Drug Delivery Vehicles. RSC Adv. 2014. V. 4. N 33. P. 17028–17038. DOI: 10.1039/C3RA47370H.

Pejic N. Performance and Efficiency of Anionic Dishwashing Liquids with Amphoteric and Nonionic Surfactants. J. Surfac-tants Deterg. 2016. V. 19. DOI: 10.1007/s11743-015-1784-5.

Jain S., Raza K., Agrawal A.K., Vaidya A. Temperature-Sensitive Carrier and Temperature-Directed Tumor Cell Eradication. In: Nanotechnology Applications for Cancer Chemotherapy. Chap. 4. Elsevier. 2021. P. 49–57. DOI: 10.1016/B978-0-12-817846-1.00004-7.

Fink J.K. Enhanced Oil Recovery In: Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids. Chap. 16. Boston: Gulf Professional Publ. 2012. P. 459–517. DOI: 10.1016/B978-0-12-383844-5.00016-7.

Rashid M., Zaid A., Tajuddin Q. Trends in Nanotechnology for Practical Applications. In: Applications of Targeted Nano Drugs and Delivery. Chapt. 11. Micro and Nano Technologies. 2019. P. 297–325. DOI: 10.1016/B978-0-12-814029-1.00011-9.

Sousa A.M., Pereira M.J., Matos H.A. Oil-in-Water and Water-in-Oil Emulsions Formation and Demulsification. J. Pet. Sci. 2022. V. 210. P. 110041. DOI: 10.1016/j.petrol.2021.110041.

Опубликован
2023-02-07
Как цитировать
Burin, D. A., Rozhkova, Y. A., & Kazantsev, A. L. (2023). ОСНОВЫ МЕТОДА СИНТЕЗА МИКРОГЕЛЕЙ МЕТОДОМ ОБРАТНОЙ ЭМУЛЬСИИ. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 66(3), 6-17. https://doi.org/10.6060/ivkkt.20236603.6732
Раздел
Обзорные статьи