BIOCATALYTIC REDUCTION OF 1-(4-METHYLPHENYL)ETHANONE

  • Aliya R. Chanysheva Ufa State Petroleum Technological University
  • Sabina T. Dibaeva Ufa State Petroleum Technological University
  • Vladimir V. Zorin Ufa State Petroleum Technological University
Keywords: biotransformation, enantioselective reduction, 1-(4-methylphenyl)ethanone, (S)-(–)-1-(4-methylphenyl)ethanol

Abstract

R- and S-1-(4-Methylphenyl)ethanols serve as a component of the essential oil from some plants in the ginger family and are used as flavoring agents in the production of perfumes, soap fragrances, and synthetic detergents. These compounds exhibit antibacterial activity against Pseudomonas aeruginosa. In this article we studied biotransformation of 1-(4-methylphenyl)ethanone catalyzed by P. crispum cells. It was found that enantioselective reduction of 1-(4-methylphenyl)ethanone catalyzed by P. crispum cells in an aqueous medium at 23-27 °C for 48 h results in formation of (S)-(–)-1-(4-methyl)ethanol with 49% yield (96% ee). Further transformation of initial ketone for 144 h as in the case of similar reduction catalyzed by D. carota cells leads to a slight increase in the yield of alcohol to 51%. However, the optical purity decreases to 80% ee. The bioreduction of 1-(4-methylphenyl)ethanone catalyzed by P.crispum cells was also studied in the presence of exogenous reducing agents (ethanol, isopropanol, or glucose), which are known to significantly affect the yield of the product and the enantioselectivity of the process. Transformation of 1-(4-methylphenyl)ethanone in the presence of ethanol (1-5%) or isopropanol (1-5%) for 144 h leads to (S)-(–)-1-(4-methylphenyl)ethanol with poor yields and optical purity. The reduction of 1-(4-methylphenyl)ethanone in the presence of isopropanol (1-3%) for 72 h leads to a decrease in the yield of (S)-(–)-1-(4-methylphenyl)ethanol, while the concentration of the initial ketone increases. Biotransformation of 1-(4-methylphenyl)ethanone for 144 h in the presence of an equimolar amount of glucose leads to an increase in the yield of (S)-(–)-1-(4-methylphenyl)ethanol to 52% (96% ee).

For citation:

Chanysheva A.R., Dibaeva S.T., Zorin V.V. Biocatalytic reduction of 1-(4-methylphenyl)ethanone. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 1. P. 104-109. DOI: 10.6060/ivkkt.20246701.6885.

References

Ishihara K., Hamada H., Hirata T., Nakajima N. Bio-transformation using plant cultured cells. J. Molec. Catal. B: Enzymatic. 2003. V. 23. P. 145-170. DOI: 10.1016/S1381-1177(03)00080-8.

Patil D. Biocatalysis using plant material: A green access to asymmetric reduction. Int. J. Chem. Tech. Res. 2015. V. 8. N 8. P. 318-324.

Patel R., Namee C.G., Banerjee A., Howell J.M., Robison R.S., Szarka L.J. Stereoselective reduction of β-keto esters by Geotrichum candidum. Enzyme Microbiol. Technol. 1992. V. 14. P. 731–738. DOI: 10.1016/0141-0229(92)90113-3.

Villa R., Molinari F. Reduction of Carbonylic and Carboxylic Groups by Plant Cell Cultures. J. Nat. Prod. 2008. V. 71. P. 693 – 696. DOI: 10.1021/np070386s.

Nakamura K., Matsuda T. Asymmetric reduction of trifluoromethyl ketones containing a sulfur functionality by the alcohol dehydrogenase from Geotrichum. Tetrahedron. 1998. V. 54. P. 8393–8402. DOI: 10.1016/S0040-4020(98)00439-6.

Hamada H., Nakamura N., Kawabe S., Funamoto T. Enantioselectivity in the reduction of α-dicarvelone by cell suspension cultures of Nicotiana tabacum. Phytochemistry. 1988. V. 27. P. 3807-3808. DOI: 10.1016/0031-9422(88)83021-8.

Matsuda T., Harada T., Nakajima Y., Itoh T., Nakamura K. Two classes of enzymes of opposite stereochemistry in an organism: one for fluorinated and another for nonfluorinated substrates. J. Org. Chem. 2000. V. 65. P. 157-163. DOI: 10.1021/jo991283k.

Andrade L.H., Utsunomiya R.S., Omori A.T.M., Porto A. L., Comasseto J.V. Edible catalysts for clean chemical reactions: Bioreduction of aromatic ketones and biooxidation of secondary alcohols using plant. J. Molec. Catal. B: Enzymatic. 2006. V. 38. N 2. P. 84–90. DOI: 10.1016/j.molcatb.2005.11.009.

Matsuda T., Nakajima Y., Harada T., Nakamura K. Asymmetric reduction of simple aliphatic ketones with dried cells of Geotrichum candidum. Tetrahedron: Asymmetry. 2002. V. 13. P. 971–974. DOI: 10.1016/S0957-4166(02)00226-4.

Chanysheva A.R., Vorobyova T.E., Zorin V.V. Relative reactivity of substituted acetophenones in enantioselective biocatalytic reduction catalyzed by plant cells of Daucus carota and Petroselinum crispum. Tetrahedron. 2019. V. 75. P. 130494. DOI: 10.1016/j.tet.2019.130494.

Chanysheva A.R., Sufiyarova A.L., Privalov N.V., Zorin V.V. Enantioselective synthesis of (S)-(-)-1-(4-fluorophenyl)ethanol. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 8. P. 111. DOI: 10.6060/ivkkt.20226508.6637.

Demmel G.I., Bordón D.L., Vázquez A.M., Decarlini M.F., Ruiz G.M., Cantero J.J. Rossi L.I., Aimar M.L. Optimisation, scope and advantages of the synthesis of chiral phenylethanols using whole seeds of Bauhinia variegata L. (Fabaceae) as a new and stereoselective bioreducer of carbonyl compounds. Biocatal. Biotransform. 2020. P. 1. DOI: 10.1080/10242422.2020.1789115.

Bordón D.L., Vázquez A.M., Decarlini M.F., Demmel G.I., Rossi L.I., Aimar M.L. Optimisation of the bioreduction process of carbonyl compounds promoted by seeds of glossy privet (Ligustrum lucidum - Oleaceae) and its application to the synthesis of key intermediates. Biocatal. Biotrans-form. 2020. P. 1-15. DOI: 10.1080/10242422.2020.1786070.

Mączka W., Wińska K., Grabarczyk M., Galek R. Plant-Mediated Enantioselective Transformation of Indan-1-One and Indan-1-ol. Catalysts. 2019. V. 9(10). P. 844-853. DOI: 10.3390/catal9100844.

Chanysheva A.R., Sufiyarova A.L., Privalov N.V., Zorin V.V. Green Asymmetric Reduction of Methylacetophenone. Russ. J. Gen. Chem. 2022. V. 92. N 13. P. 3111–3115. DOI: 10.1134/S1070363222130126.

Chanysheva A.R., Vorobyova E.N., Zorin V.V. Enanti-oselective bioreduction of acetophenone into (R)- and (S)-1-phenylethanols. Russ. J. Gen. Chem. 2017. V. 87. N 13. P. 3259–3262. DOI:10.1134/S1070363217130229.

Gašo-Sokač D., Nujić M., Bušić V., Habuda-Stanić M. Biocatalytic reductions by plant tissue - Green alternative to alcohol production. Croat. J. Food Sci. Technol. 2014. V. 6. N 1. P. 51–60.

Chanysheva A.R., Privalov N.V., Zorin V.V. Enantioselective biocatalytic reduction of hexan-2-one, catalyzed by Petroselinum crispum cells. Russ. J. Gen. Chem. 2020. V. 90. N 13. P. 2542–2545. DOI: 10.1134/S1070363220130022.

Chanysheva A.R., Yunusova G.V., Vorobyova T.E., Zorin V.V. Enantioselective synthesis of (S)-1-phenylethanol, a precursor to low-molecular-weight bioregulators. Russ. J. Gen. Chem. 2016. V. 86. N 13. P. 3021 – 3024. DOI: 10.1134/S107036321613017X.

Chanysheva A.R., Sheiko E.A., Zorin V.V. Stereoselec-tive bioreduction of hexan-2-one into (2S)-(+)-hexan-2-ol. Russ. J. Gen. Chem. 2018. V. 88. N 13. P. 2934–2936. DOI: 10.1134/S1070363218130170.

Chanysheva A.R., Zorin V.V. Enantioselective bioreduction of heptan-2-one and octan-2-one catalyzed by Daucus carota cells. Indian J. Chem. 2020. V. 59B. P. 1381-1383. DOI: 10.56042/ijcb.v59i9.28392.

Chanysheva A.R., Sheiko E.A., Zorin V.V. Asymmetric bioreduction of 4-chloroacetophenone catalyzed by Daucus carota cells in water and organic solvents. Ekolog. Khim. 2021. V. 30. N 6. P. 301–305 (in Russian). DOI: 10.1134/S1070363221130247.

Published
2023-12-09
How to Cite
Chanysheva, A. R., Dibaeva, S. T., & Zorin, V. V. (2023). BIOCATALYTIC REDUCTION OF 1-(4-METHYLPHENYL)ETHANONE. ChemChemTech, 67(1), 104-109. https://doi.org/10.6060/ivkkt.20246701.6885
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)