OPTIMIZATION OF THE SYNTHESIS METHOD FOR VITAMIN A NANOEMULSIONS

Keywords: nanoemulsions, vitamin A, optimization, hydrodynamic radius, micelles

Abstract

The article presents the results of optimizing the procedure for the synthesis of vitamin A nanoemulsions. For the synthesis of nanoemulsions, vitamin A and Tween 80 were mixed, distilled water was added to the resulting mixture and mixed with a dispersant. To optimize the method for synthesizing vitamin A nanoemulsions, a multifactorial experiment was carried out, which included 4 input parameters. As input parameters, we considered the stirring speed, stirring time, the content of the dispersed phase, the content of fat-soluble vitamin A in the dispersed phase. The average hydrodynamic radius of vitamin A micelles was used as an output parameter. As a result of the studies, ternary surfaces of the dependence of the average hydrodynamic radius of vitamin A micelles on the parameters of nanoemulsion synthesis were obtained. It was found that all samples have a monomodal size distribution. The analysis of the data obtained made it possible to establish that the average hydrodynamic radius of vitamin A micelles is significantly affected by all the studied parameters. The optimal parameters for the synthesis of vitamin A nanoemulsions have been established: stirring speed (ν) - from 17000 to 22500 rpm, mixing time (τ) - from 180 to 270 s, content of the dispersed phase (ω (dispersed phase) - from 1 to 4%, the content of fat-soluble vitamin A in the dispersed phase (ω (vitamin A)) is from 50 to 70%. The nanoemulsion sample obtained with these parameters has an average hydrodynamic micelle radius of 62 ± 13 nm.

For citation:

Gvozdenko A.A., Blinov A.V., Golik A.B., Rekhman Z.A., Kolodkin M.A., Oblogin Y.A., Kuznetsov E.S. Optimization of the synthesis method for vitamin A nanoemulsions. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 6. P. 94-99. DOI: 10.6060/ivkkt.20246706.6966.

Author Biographies

Andrey V. Blinov, North Caucasian Federal University

Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkina str., Stavropol, Russia, 355017

 

Alexey B. Golik, North Caucasian Federal University

Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkina str., Stavropol, Russia, 355017

 

Zafar A. Rekhman, North Caucasian Federal University

Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkina str., Stavropol, Russia, 355017

 

Maxim A. Kolodkin, North Caucasian Federal University

Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkina str., Stavropol, Russia, 355017

 

Yaroslav A. Oblogin, North Caucasian Federal University

Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkina str., Stavropol, Russia, 355017

 

Egor S. Kuznetsov, Stavropol State Medical University

Faculty of Pediatrics, Stavropol State Medical University, st. Mira 310, Stavropol, Russian Federation

 

References

Mason T.G. Nanoemulsions: formation, structure, and physical properties. J. Phys.: Conden. Matter. 2006. V. 18. N 41. P. R635. DOI: 10.1088/0953-8984/18/41/R01.

Naseema A., Kovooru L., Behera A. K., Kumar K. P., Srivastava P. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv. Colloid Interface Sci. 2021. V. 287. P. 102318. DOI: 10.1016/j.cis.2020.102318.

Elzayat A., Adam-Cervera I., Álvarez-Bermúdez O., Muñoz-Espí R. Nanoemulsions for synthesis of biomedical nanocarriers. Colloids Surf. B: Biointerfaces. 2021. V. 203. P. 111764. DOI: 10.1016/j.colsurfb.2021.111764.

Kumar J., Jaswal S. Role of nanotechnology in the world of cosmetology: A review. Mater. Today: Proc. 2021. V. 45. P. 3302-3306. DOI: 10.1016/j.matpr.2020.12.638.

Kumar N., Verma A., Mandal A. Formation, characteristics and oil industry applications of nanoemulsions: A review. J. Petrol. Sci. Eng. 2021. V. 206. P. 109042. DOI: 10.1016/j.petrol.2021.109042.

Aswathanarayan J.B., Vittal R.R. Nanoemulsions and their potential applications in food industry. Front. Sust. Food Systems. 2019. V. 3. P. 95. DOI: 10.3389/fsufs.2019.00095.

Pourmadadi M., Ahmadi M., Abdouss M., Yazdian F., Rashedi H., Navaei-Nigjeh M., Hesari Y. The synthesis and characterization of double nanoemulsion for targeted Co-Delivery of 5-fluorouracil and curcumin using pH-sensitive agarose/chitosan nanocarrier. J. Drug Delivery Sci.Technol. 2022. V. 70. P. 102849. DOI: 10.1016/j.jddst.2021.102849.

Banasaz S., Morozova K., Ferrentino G., Scampicchio M. Encapsulation of lipid-soluble bioactives by nanoemulsions. Molecules. 2020. V. 25(17). P. 3966. DOI: 10.3390/molecules25173966.

Çınar K. A review on nanoemulsions: preparation methods and stability. Trakya Üniversitesi Mühendislik Bilimleri Dergisi. 2017. V. 18(1). P. 73-83.

Nagdalian A.A., Blinov A.V., Golik A.B., Blinova A.A., Gvozdenko A.A., Maglakelidze D.G. Effect of ionic strength and active acidity of the medium on the stability of vitamin E nanoemulsions (alpha-tocopherol acetate). ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 12. P. 24-29 (in Russian). DOI: 10.6060/ivkkt.20226512.6677.

Mansuri A., Chaudhari R., Nasra S., Meghani N., Ran-jan S., Kumar A. Development of food-grade antimicrobials of fenugreek oil nanoemulsion-bioactivity and toxicity analysis. Environ. Sci. Poll. Res. 2023. V. 30(10). P. 24907-24918. DOI: 10.1007/s11356-022-19116-y.

Hashemnejad S.M., Badruddoza A.Z.M., Zarket B., Ricardo Castaneda C., Doyle P.S. Thermoresponsive nanoemulsion-based gel synthesized through a low-energy process. Nat. Commun. 2019. V. 10(1). P. 2749. DOI: 10.1038/s41467-019-10749-1.

Mustafa I.F., Hussein M.Z. Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials. 2020. V. 10(8). P. 1608. DOI: 10.3990/nano10081608.

Chawla P., Kumar N., Kaushik R., Dhull S.B. Synthesis, characterization and cellular mineral absorption of nanoemulsions of Rhododendron arboreum flower extracts stabilized with gum arabic. J. Food Sci. Technol. 2019. V. 56. P. 5194-5203. DOI: 10.1007/s13197-019-03988-z.

Liao Y., Zhong L., Liu L., Xie L., Tang H., Zhang L., Li X. Comparison of surfactants at solubilizing, forming and sta-bilizing nanoemulsion of hesperidin. J. Food Eng. 2020. V. 281. P. 110000. DOI: 10.1016/j.jfoodeng.2020.110000.

Sarheed O., Shouqair D., Ramesh K.V.R.N.S., Khaleel T., Amin M., Boateng J., Drechsler M. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor. Int. J. Pharm. 2020. V. 576. P. 118952. DOI: 10.1016/j.ijpharm.2019.118952.

da Silveira T.F.F., Laguerre M., Bourlieu-Lacanal C., Lecomte J., Durand E., Figueroa-Espinoza M. C., Ville-neuve P. Impact of surfactant concentration and antioxidant mode of incorporation on the oxidative stability of oilin-water nanoemulsions. LWT. 2021. V. 141. P. 110892. DOI: 10.1016/j.lwt.2021.110892.

Blinov A.V., Nagdalyan A.A., Gvozdenko A.A., Golik A.B., Slyadneva K.S., Pirogov M.A. Study of the influence of synthesis parameters on the average hydrody-namic radius of vitamin E (alpha-tocopherol acetate) micelles. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 7. P. 45-53 (in Russian). DOI: 10.6060/ivkkt.20226507.6571.

Asadinezhad S., Khodaiyan F., Salami M., Hosseini H., Ghanbarzadeh B. Effect of different parameters on orange oil nanoemulsion particle size: combination of low energy and high energy methods. J. Food Measur. Charact. 2019. 13. P. 2501-2509. DOI: 10.1007/s11694-019-00170-z.

Pengon S., Suchaoin W., Limmatvapirat C., Limmat-vapirat S. Development of nanoemulsions containing coconut oil with mixed emulsifiers: Effect of mixing speed on physical properties. Key Eng. Mater. 2019. V. 819. P. 181-186. DOI: 10.4028/www.scientific.net/KEM.819.181.

Zhang L., Zhang F., Fan Z., Liu B., Liu C., Meng X. DHA and EPA nanoemulsions prepared by the low-energy emulsification method: Process factors influencing droplet size and physicochemical stability. Food Res. Int. 2019. V. 121. P. 359-366. DOI: 10.1016/j.foodres.2019.03.059.

Roselan M.A., Ashari S.E., Faujan N.H., Mohd Faudzi S.M., Mohamad R. An improved nanoemulsion formulation containing kojic monooleate: optimization, characterization and in vitro studies. Molecules. 2020. V. 25(11). P. 2616. DOI: 10.3390/molecules25112616.

Published
2024-05-04
How to Cite
Gvozdenko, A. A., Blinov, A. V., Golik, A. B., Rekhman, Z. A., Kolodkin, M. A., Oblogin, Y. A., & Kuznetsov, E. S. (2024). OPTIMIZATION OF THE SYNTHESIS METHOD FOR VITAMIN A NANOEMULSIONS. ChemChemTech, 67(6), 94-99. https://doi.org/10.6060/ivkkt.20246706.6966
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)