THERMOCHEMISTRY OF THE DISSOLUTION OF 5,10,15,20-TETRAKIS(1'-CARBOXYMETHYL-PYRID-4-YL)PORPHYRIN TETRACHLORIDE AND 5,10,15,20-TETRAKIS(1'- CARBOXYMETHYL -PYRID-4-YL)PORPHYRIN TETRABROMIDE AT 298.15 K

  • Olga N. Krutova Ivanovo State University of Chemistry and Technology
  • Nadezhda M. Berezina Ivanovo State University of Chemistry and Technology
  • Alexey V. Volkov Ivanovo State University of Chemistry and Technology
  • Alexander S. Semeykin Ivanovo State University of Chemistry and Technology
  • Mikhail I. Bazanov Ivanovo State University of Chemistry and Technology
  • Viktor V. Chernikov Ivanovo State University of Chemistry and Technology
  • Pavel D. Krutov Ivanovo State University of Chemistry and Technology
Keywords: thermodynamics, solutions, calorimeter, enthalpy, constant, tetrapyridylporphines

Abstract

5,10,15,20-tetrakis(1'-carboxymethylpyrid-4-yl)porphyrin tetrachloride (1) and 5,10,15,20-tetrakis(1'-carboxymethylpyrid-4-yl)porphyrin tetrabromide (2) were synthesized. Water-soluble tetrapyridylporphine derivatives are salts of halides with multicharged cations with a complex aromatic structure. Thermal effects of dissolution of crystalline tetrapyridylporphins (1) and (2) in water and in aqueous solutions of KOH at 298.15 K were determined by direct calorimetric method. The integral enthalpies of dissolution were measured on a variable temperature calorimeter with an isothermal shell that we designed. The reaction part of the calorimeter and all internal parts in contact with the solution are made of titanium alloy VT-1. The volume of the calorimetric cell was ~60 cm3. The stability of the thermostating system during calorimetric measurements was maintained with an accuracy of 10–3 K. The standard enthalpies of formation of compounds were calculated using the additive group method. This method takes into account the influence of the primary environment for atoms. The values of the standard enthalpy of tetrapyridylporphine formation and its dissociation products in an aqueous solution were obtained for the first time. They are key quantities in the thermochemistry of this compound, open up the possibility of conducting rigorous thermodynamic calculations in systems with tetrapyridylporphine. The differences in thermochemistry of porphyrins (1) and (2) related to different counter-ion (chloride or bromide) opens a possibility to use solution calorimetry for distinguishing between these ions, which can be useful in some industrial applications.

For citation:

Krutova O.N., Berezina N.M., Volkov A.V., Semeikin A.S., Bazanov M.I., Chernikov V.V., Krutov P.D. Thermochemistry of the dissolution of 5,10,15,20-tetrakis(1'-carboxymethyl-pyrid-4-yl)porphyrin tetrachloride and 5,10,15,20-tetrakis(1'- carboxymethyl -pyrid-4-yl)porphyrin tetrabromide at 298.15 K. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 4. P. 28-36. DOI: 10.6060/ivkkt.20246704.6978.

References

Gamboa M., Campos M., Torres L.A. Experimental Determination of Enthalpies of Solution of Tetraphenyl Porphyrin (TPP) and Some Metal Derivatives, in Chloroform: Interpretation of the Solvation Processes at a Mo-lecular Level. Inorg. Chem. 2010. V. 49. P. 659–664. DOI: 10.1021/ic901921q.

Kustov A.V., Smirnova N.L., Berezin M.B. Standard enthalpies and heat capacities of ethyl acetate and deu-teroporphyrindimethylester solution in N,N-dimethylformamide at 298-318K. Thermochim. Acta. 2011. V. 521. P. 224-226. DOI: 10.1016/j.tca.2011.02.020.

Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Blood porphyrins in binary mixtures of N,N-dimethylformamide with 1-octanol and chloroform: The energetics of solvation, (solute+cosolvent) interactions and model calculations. J. Chem. Thermodynamics. 2015. V. 83. P. 104–109. DOI: 10.1016/j.jct.2014.12.013.

Berezina N.M., Berezin M.B. Solubility of tetra(pyrid-3- and 4-yl)porphines and their complexes with d-metals in chloroform and ethanol. Zhurn. Fiz. Khim.. A. 2016. V. 90(4). P. 787-791 (in Russian). DOI: 10.1134/S003602441604004X.

Berezina N.M., Berezin M.B., Semeikin A.S. Solvation interactions and photostability of tetrakis(1-methylpyridyl)porphyrin derivatives. J. Mol. Liq. 2019. V. 290. Р. 111196. DOI: 10.1016/j.molliq.2019.111196.

Berezin M.B., Berezina N.M., Bazanov M.I., Semeikin A.S. Solvation Interactions of Tetrapyridylporphyrin De-rivatives in Aqueous Solutions. Macroheterocycles. 2011. V. 4(1). P. 26-29. DOI: 10.6060/mhc2011.1.05.

Berezina N.M., Bazanov M.I., Semeikin A.S., Berezin M.B. The physicochemical properties of complexones, tetrapyridylporphin derivatives. Zhurn. Fiz. Khim. A. 2009. V. 83. N 5. P. 785-791 (in Russian). DOI: 10.1134/S0036024409050185.

Lytkin A.I., Krutova O.N., Tyunina E.Y., Krutova E.D., Mokhova Y.V. Thermodynamic characteristics of acid-core reactions interactions in the water solution piri-doxal-5'-phosphate. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 7. P. 10-14. DOI: 10.6060/ ivkkt.20206307.6184.

Wadsö I., Goldberg R.N. Standards in isothermal micro-calorimetry (IUPAC Technical Report). Pure Appl. Chem. 2001. V. 73. P. 1625–1639. DOI: 10.1351/pac200173101625.

Takhistov A.V., Ponomarev D.A. Organic Mass Spectrometry. SPb.: VVM. 2002. 346 p. (in Russian).

Kizin A.N., Lebedev Yu.A. Calculation of the enthalpies of formation of polysubstituted aliphatic compounds in the solid phase. Dokl. AN USSR. 1982. 262. V. 4. P. 914 (in Russian).

Zakirov D.R., Bazanov M.I., Volkov A.V., Semeikin A.S. Standard thermodynamic characteristics of a zinc(II)-etioporphyrin-I complex. Zhurn. Fiz. Khim. 2001. V. 75(12). P. 2114-2115 (in Russian).

Krutova O.N., Maizlish V.E., Lytkin A.I., Chernikov V.V., Volkov A.V., Fedotova A.E., Krutov P.D. Ther-mochemistry of the Dissolution of Tetra-4-carboxymetallophthalocyanines in Aqueous Solutions of KOH at 298.15 K. Zhurn. Fiz. Khim. 2023. V. 97. N 2. Р. 318–322 (in Russian). DOI: 10.1134/S0036024423020115.

Tyunina E.Yu., Krutova O.N., Lytkin A.I. Determination of the complexation parameters of L-asparagine with some biologically active pyridine derivatives in aqueous solutions from calorimetric results. Thermochim. Acta. 2020. V. 690. P. 178704. DOI: 10.1016/j.tca.2020.178704.

Meshkov A.N., Gamov G.A. Mathematical processing of experimental data, obtained on the ampoule calorimeter and calorimeter titrans with different cell types. Zhurn. Fiz. Khim. 2023. V. 97(2). P. 204–209 (in Russian). DOI: 10.31857/S0044453723020164.

Meshkov A.N., Gamov G.A. KEV: A free software for calculating the equilibrium composition and determining the equilibrium constants using UV-Vis and potentiometric data. Talanta. 2019. V. 198. P. 200-205. DOI: 10.1016/j.talanta.2019.01.107.

Vasil’ev V.P. Thermodynamic Properties of Electrolyte Solutions. M.: Vyssh. Shk. 1982. 200 p. (in Russian).

Ramotowska S., Dąbkowska I., Zarzeczańska D. In pursuit of the ideal chromoionophores (part II): The struc-ture-property relationship for electrochemical signaling capacities of aza-12-crown-4 ethers substituted with an anthraquinone moieties. Hybrid Gold Open Access. 2022. V. 197. P. 273-281. DOI: 10.1016/j.dyepig.2021.109891.

Kuz'mina A., Volkova M., Kuz'mina K., Usacheva T., Sharnin V., Arena I. Effect of reactant solvation on the stability of complexes of silver(I) with 18-crown-6 in ethanol-dimethyl sulfoxide mixtures. J. Molec. Liq. 2019. V. 276. P. 78-82. DOI: 10.1016/j.molliq.2018.11.097.

Usacheva T.R., Pham Thi L., Sharnin V.A. Calorimetric study of the molecular complex formation of glycyl–glycyl–glycine with 18-crown-6 in aqueous organic solvents. Zhurn. Obshch. Khim. 2017. V. 87. P. 591–599 (in Russian). DOI: 10.1134/S1070363217030355.

Krutova O., Usacheva T., Niccoli M., Giancola C. Thermochemical analysis of intermolecular interactions of L-carnosine with isonicotinic acid in aqueous solutions. J. Therm. Anal. Calorimetry. 2021. V. 147(4). P. 1-7. DOI: 10.1007/ s10973-021-10982-1.

Krutova O.N., Chernikov V.V., TyuninaE.Yu., Krutov P.D., Romanov R.A. Standard enthalpy of formation of lornoxicam and its anion L- in aqueous solution. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 12. P. 6-11. DOI: 10.6060/ivkkt.20226511.6696.

Bushuev Y., Usacheva T., Sharnin V. Molecular dynamics simulations of 18-crown-6 aqueous solutions. J. Molec. Liq. 2016. V. 224. Pt. A. P. 825. DOI: 10.1016/j.molliq.2016.10.062.

Lytkin A.I., Barannikov V.P., Badelin V.G., Krutova O.N. Enthalpies of acid dissociation of L-carnosine in aqueous solution. J. Therm. Anal. Calorimetry. 2020. V. 139. P. 3683–3689. DOI: 10.1007/s10973-019-08604-y.

Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Thermodynamics of Solution of Hemato- and Deu-teroporphyrins in N,N- Dimethylformamide. J. Chem. Eng. Data. 2013. V. 58. N 9. P. 2502-2505. DOI: 10.1021/je400388j.

Kustov A.V., Bekeneva A.V., Saveliev V.I., Korolev V.P. Solvation of tetraethyl- and tetrabutylammonium bromides in aqueous acetone and aqueous hexamethyl phosphoric triamide mixtures in the waterrich region. J. Solution Chem. 2002. V. 31. N 1. P. 71-80. DOI: 10.1023/A:1014809219103.

Lytkin A.I., Chernikov V.V., Krutova O.N., Skvortsov I.A. Standard enthalpies of formation L-lysine and the products of its dissociation in aqueous solutions. J. Therm. Anal. Cal. 2017. V. 130. N 1. P. 457-460. DOI: 10.1007/s10973-017-6134.

Published
2024-03-04
How to Cite
Krutova, O. N., Berezina, N. M., Volkov, A. V., Semeykin, A. S., Bazanov, M. I., Chernikov, V. V., & Krutov, P. D. (2024). THERMOCHEMISTRY OF THE DISSOLUTION OF 5,10,15,20-TETRAKIS(1’-CARBOXYMETHYL-PYRID-4-YL)PORPHYRIN TETRACHLORIDE AND 5,10,15,20-TETRAKIS(1’- CARBOXYMETHYL -PYRID-4-YL)PORPHYRIN TETRABROMIDE AT 298.15 K. ChemChemTech, 67(4), 28-36. https://doi.org/10.6060/ivkkt.20246704.6978
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)

1 2 > >>