BORON-NITROGEN COMPOUNDS IN THE REACTION OF BORIC AND BORONIC ACIDS WITH AMINES

  • Svetlana V. Strokova Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the RAS
  • Maxim A. Lenskiy Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the RAS
Keywords: boric acid, arylboronic acids, amines, borates, boron-nitrogen compounds, synthesis

Abstract

The article is a review of boric or arylboronic acids reactions with aliphatic and aromatic amines. The review is for informational purposes only on the interaction of the acids in question with amines. It is shown that the data on the boric acid reaction with amines are contradictory and, at present, there is no confirmed information on obtaining a covalent bond between boron and nitrogen without the involvement of hydroxyl groups and the cyclic systems formation, for example, in the oxazaborolidines case. Literary searches have shown that the report on the anilinboronic acid production in 1963 was not developed, and there is also no data on the synthesis of those compounds. Along with this, boric acid easily forms borate salts of various configurations with amines, that is confirmed by modern methods of analysis (IR- and NMR-spectroscopy, elemental analysis). It has also been shown that boric acid is capable of forming compounds with an intramolecular donor-acceptor bond between boron and nitrogen. The theoretical calculations results and experimental data on the arylboronic acids interaction, with various aromatic ring substituents, with pyrocatechines, o-phenylenediamines, 2-hydroxybenzenetiols and o-benzenedithiols are presented. It is noted that competitive formation of anhydride-like structures is observed in all these reactions. It is shown that the interaction with pyrocatechins is the most thermodynamically advantageous. In the arylboronic acids reaction with ortho-benzenedithiols, ortho-hydroxybenzenetiols in chloroform, the corresponding oxathiaboroles and dithiaboroles were not isolated. The latter were obtained by the boron trichloride reaction with the corresponding electron donors. It is reported that there is no information on the preparation of condensation products of phenylboronic acids with aniline and benzylamine.

For citation:

Strokova S.V., Lenskiy M.A. Boron-nitrogen compounds in the reaction of boric and boronic acids with amines. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 6. P. 6-13. DOI: 10.6060/ivkkt.20246706.6988.

References

Nidentsu K., Dawson J. Chemistry of borazote com-pounds. M.: Nauka. 1968. 238 p. (in Russian).

Lenskiy M.A., Novitskiy A.N., Korabel’nikov D.V., Ozhogin A.V., Shul’ts E.E. Synthesis and properties of bo-ron-containing oligomers based on hydroquinone and boric acid. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 4. P. 4-11 (in Russian). DOI: 10.60/ivkkt.20206304.6116.

Lipunov I.N., Pervova I.G., Nikiforov A.F. Sorption of boric acid using polycondensation anion exchangers. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 8. P. 42-48 (in Russian). DOI: 10.6060/ivkkt.20216408.6320.

Hall D.G. Boronic acids: preparation and applications in organic synthesis and medicine. Wiley-VCH. 2005. 549 p. DOI: 10.1002/3527606548.

Chaudhuri T.C. CXXI. — Synthesis of boranilides. Part I. Boranilide and its derivatives. J. Chem. Soc., Trans. 1920. V. 117. P. 1081–1086. DOI: 10.1039/CT9201701081.

Kinney C.R., Pontz D.F. Boranilide. J. Am. Chem. Soc. 1935. V. 57. N 6. P. 1128–1129. DOI: 10.1021/ja01309a054.

Paushkin Ya.M., Panami I.S. Synthesis of boron-nitrogen-containing compounds based on boric acid. Tr. Mosk. In-ta Neft. Gaz. Prom-sti. 1963. V. 44. N 33. P. 34-38 (in Russian).

Strokova S.V., Lensky M.A., Ozhogin A.V., Korabelnikov D.V., Uskov V.G., Petrov M.A., Gorshkov D.S., Kvasov D.V., Balakhnina A.V. Interaction of boric acid with benzylamine. Yuzh.-Sibir. Nauch. Vestn. 2023. V. 2. N 48. P. 119-123 (in Russian). DOI: 10.25699/SSSB.2023.48.2.007.

Vineyard B.D., Godt H.C. A Study of the Reaction of Boric Acid with Amines: Hydroxyboroxin-Amine Salts. Inorg. Chem. 1964. V. 3. N 8. P. 1144–1147. DOI: 10.1021/ic50018a017.

Nechvolodova E.M., Sakovich R.A., Grachev A.V., Vladimirov L.V., Shashkin D.P., Tkachenko L.A., Shaulov A.Yu., Berlin A.A. Hybrid complex polymers of boron hy-droxide and imidazole. Khim. Fizika. 2017. V. 36. N 9. P. 66-73 (in Russian). DOI: 10.7868/S0207401X17090072.

Nechvolodova E.M., Sakovich R.A., Grachev A.V., Glagolev N.N., Motyakin M.V., Shaulov A.Yu., Berlin A.A. Polycomplexes of polycondensation products of boric acid and p-phenylenediamine. Khim. Fizika. 2017. V. 36. N 5. P. 82-86 (in Russian). DOI: 10.7868/S0207401X17050077.

Das M.K., Bandyopadhyay S.N. Synthesis and Reactivity of Boron Heterocycles Derived from Amino Acids. Synth. React. Inorg. Metal-Organic Chem. 1991. V. 21. N 6-7. P. 931–939. DOI: 10.1080/15533179108020193.

Cabiddu S., Secci M., Maccioni A., Mura L. Preparation of some 1,2,3-benzoxathiaborole derivatives. J. Heterocycl. Chem. 1975. V. 12. N 1. P. 169–170. DOI: 10.1002/jhet. 5570120131.

Bandyopadhyay A., Cambray S., Gao J. Fast and selective labeling of N-terminal cysteines at neutral pH via thiazolidino boronate formation. Chem. Sci. 2016. V. 7. P. 4589–4593. DOI: 10.1039/c6sc00172f.

Li K., Weidman C., Gao J. Dynamic Formation of Imidazolidino Boronate Enables Design of Cysteine-Responsive Peptide. Org. Lett. 2017. V. 20. N 1. P. 20–23. DOI: 10.1021/acs.orglett.7b03116.

Bandyopadhyay A., Gao J. Iminoboronate-Based Peptide Cyclization That Responds to pH, Oxidation, and Small Molecule Modulators. J. Am. Chem. Soc. 2016. V. 138. N 7. P. 2098–2101. DOI: 10.1021/jacs.5b12301.

Lopes R.M. Ventura A.E., Silva L.C., Faustino H., Gois P.M.P. N,O -Iminoboronates: Reversible Iminoboronates with Improved Stability for Cancer Cells Targeted Delivery. Chem. A Eur. J. 2018. V. 24. N 48. P. 12495-12499. DOI: 10.1002/chem.201802515.

Wiskur S. L., Lavigne J.J., Ait-Haddou H., Vincent L., Chiu Y.H., Canary J.W., Anslyn E.V. pKa values and Geometries of Secondary and Tertiary Amines Complexed to Boronic Acids-Implications for Sensor Design. Org. Lett. 2001. V. 3. N 9. P. 1311–1314. DOI: 10.1021/ol0156805.

Lauer M., Wulff G. Arylboronic acids with intramolecular B–N interaction: convenient synthesis through ortholithiation of substituted benzylamines. J. Organometal. Chem. 1983. V. 256. N 1. P. 1-9. DOI: 10.1016/s0022-328x (00)99290-8.

Zhu L., Zhong Z., Anslyn E.V. Guidelines in Implement-ing Enantioselective Indicator-Displacement Assays for α-Hydroxycarboxylates and Diols. J. Am. Chem. Soc. 2005. V. 127. N 12. P. 4260–4269. DOI: 10.1021/ja0435945.

Williams G. T. Kedge J.L., Fossey J.S. Molecular Boronic Acid-Based Saccharide Sensors. ACS Sens. 2021. V. 6. N 4. P. 1508–1528. DOI: 10.1021/acssensors.1c00462.

Navarro R.C., Pérez V.M.J., Flores B.M.M., Dias H.V.R., Moggio I., Arias E., Ortíz G.R., Santillan R., García C., Ochoa M.E., Yousufuddin M., Waksman N. Luminescent Organoboron Compounds Derived from Sali-cylidenebenzohydrazide: Synthesis, Characterization, Structure, and Photophysical Properties. Dyes Pigments. 2013. V. 99. N 3. P. 1036-1043. DOI: 10.1016/j.dyepig.2013.07.039.

Navarro R.C., Flores B.M.M., Pérez V.M.J., Moggio I., Arias I.E., Ortíz G.R., López M.C.G., García V.R., Elizondo P., Rodríguez M. Optical and Nonlinear Optical Properties, Thermal Analysis, Cyclic Voltammetry and DFT Studies: Green Synthesis Approach of Boronates Derived from Schiff Bases. IJISET. 2014. V. 1. N 10. Р. 462-475.

Rodrıguez M., Maldonado J.L., Ortız G.R., Lamere J.F., Lacroix P.G., Farfan N., Ochoa M.E., Santillan R., Nava M.A.M., Garcıa O.B., Nakatani K. Synthesis and non-linear optical characterization of novel borinate derivatives of cinnamaldehyde. New J. Chem. 2009. V. 33. Р. 1693-1702. DOI: 10.1039/B820435G.

Rao Y.L., Amarne H., Wang S. Photochromic fourcoordinate N,C-chelate boron compounds. Coord. Chem. Rev. 2012. V. 256. N 5-8. Р. 759-770. DOI: 10.1016/j.ccr. 2011.11.009.

Mathre D.J., Jones T.K., Xavier L.C., Blacklock T.J., Reamer R.A., Mohan J.J., Grabowski E.J.J. A practical enantioselective synthesis of .alpha.,.alpha.-diaryl-2-pyrrolidinemethanol. Preparation and chemistry of the corresponding oxazaborolidines. J. Org. Chem. 1991. V. 56. N 2. P. 751–762. DOI: 10.1021/jo00002a049.

Letsinger R.L., Hamilton S.B. Organoboron Compounds. VIII. Dihydrobenzoboradiazolesl. J. Am. Chem. Soc. 1958. V. 80. N 20. P. 5411–5413. DOI: 10.1021/ja01553a023.

Goldberg A.R., Northrop B.H. Spectroscopic and Computational Investigations of The Thermodynamics of Boronate Ester and Diazaborole Self-Assembly. J. Org. Chem. 2016. V. 81. N 3. P. 969–980. DOI: 10.1021/acs.joc.5b02548.

Kaupp G., Naimi-Jamal M.R., Stepanenko V. Waste-Free and Facile Solid-State Protection of Diamines, An-thranilic Acid, Diols, and Polyols with Phenylboronic Acid. Chem. – A Eur. J. 2003. V. 9. N 17. P. 4156–4161. DOI: 10.1002/ chem.200304793.

Nyilas B.E., Soloway A.H. Boroncontaining Heterocycles I. Synthesis of Several Borimidalines. Am. Chem. Soc. 1959. V. 81. N 11. P. 2681–2683. DOI: 10.1021/ja01520a024.

Slabber S.A. Grimmer C.D., Robinson R.S. Solution-state 15N NMR and solid-state single-crystal XRD study of heterosubstituted diazaboroles and borinines prepared via an effective and simple microwave-assisted solvent-free synthesis. J. Organometal. Chem. 2013. V. 723. N 1. P. 122-128. DOI: 10.1016/j.jorganchem.2012.09.018.

Zurwerra D., Quetglas V., Kloer D.P., Renold P., Pitterna T. Synthesis and Stability of Boratriazaroles. Org. Lett. 2015. V. 17. N 1. P. 74–77. DOI: 10.1021/ol5032552.

Goldberg A.R., Northrop B.H. Spectroscopic and Computational Investigations of The Thermodynamics of Boronate Ester and Diazaborole Self-Assembly. J. Org. Chem. 2016. V. 81. N 3. P. 969–980. DOI: 10.1021/acs.joc.5b02548.

Cabiddu S., Secci M., Maccioni A., Mura L. Preparation of some 1,2,3-benzoxathiaborole derivatives. J. Heterocycl. Chem. 1975. V. 12. N 1. P. 169–170. DOI: 10.1002/jhet. 5570120131.

Goswami A., Maier C.J., Pritzkow H., Siebert W. Cobalt-Mediated Cyclooligomerization Reactions of Borylacetylenes. Eur. J. Inorg. Chem. 2004. V 13. P. 2635-2645. DOI: 10.1002/ejic.200400063.

Published
2024-05-04
How to Cite
Strokova, S. V., & Lenskiy, M. A. (2024). BORON-NITROGEN COMPOUNDS IN THE REACTION OF BORIC AND BORONIC ACIDS WITH AMINES. ChemChemTech, 67(6), 6-13. https://doi.org/10.6060/ivkkt.20246706.6988
Section
Reviews