АНАЛИТИЧЕСКИЕ МЕТОДЫ ДЛЯ ОЦЕНКИ ФАРМАЦЕВТИЧЕСКОГО ЗАГРЯЗНЕНИЯ РЕК МИРА; ОБЗОР

  • Jasim. M.S. Jamur Багдадский университет
Ключевые слова: аналитические методы, фармацевтическое загрязнение, реки

Аннотация

Недавние сообщения о новых проблемах загрязнения, вызванных присутствием лекарств в водной среде, вызвали большой интерес к исследованиям, направленным на анализ и смягчение связанных с этим экологических рисков, а также степени этого загрязнения. Основными источниками фармацевтических загрязнителей в природных озерах и реках являются сточные воды клиник, сточные воды фармацевтического производства и сточные воды жилых домов, загрязненные экскрементами потребителей лекарств. При оценке состояния рек фармацевтические загрязнители были определены как одни из новых загрязнителей. Предыдущие исследования показали, что примесями в широко используемых фармацевтических препаратах являются нестероидные противовоспалительные препараты, антибиотики, антиретровирусные и противораковые препараты. Кроме того, этот обзор демонстрирует использование аналитических методов для изучения этих загрязнителей в различных видах речной воды. Из-за их чрезвычайно низких концентраций в водной среде (примерно в диапазоне от нг/л до г/л) для идентификации и количественного определения этих продуктов необходимо применять методику высокочувствительного и селективного многокомпонентного одновременного анализа. Этот аналитический метод обеспечивает гибкие и надежные средства для выявления и оценки фармацевтических загрязнителей в пробах речной воды путем сочетания твердофазной экстракции и масс-спектрометрических методов. SPE-LC/MS/MS – основной метод оценки уровня загрязнения.

Для цитирования:

Джамур Джасим. M.С. Аналитические методы для оценки фармацевтического загрязнения рек мира; обзор. Изв. вузов. Химия и хим. технология. 2024. Т. 67. Вып. 5. С. 6-16. DOI: 10.6060/ivkkt.20246705.7017.

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Литература

Sadiq K.A., Mohammed S.J., Ghati S.K., Jasim M.S. Adsorption of Bromothymol Blue Dye onto Bauxite Clay. 2024.

Ranjan N., Singh P.K., Maurya N.S. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions. Ecotoxicol. Environ. Saf. 2022. V. 247(November). 114220. DOI: 10.1016/j.ecoenv.2022.114220.

Bolong N., Ismail A.F., Salim M.R., Matsuura T. A review of the effects of emerging contaminants in wastewater and options for their removal. DES. 2009. V. 239(1–3). P. 229–46. DOI: 10.1016/j.desal.2008.03.020.

Geissen V., Mol H., Klumpp E., Umlauf G., Nadal M., Van Der Ploeg M. Emerging pollutants in the environ-ment: A challenge for water resource management. Int. Soil. Water Conserv. Res. 2015. P. 1–9. DOI: 10.1016/j.iswcr.2015.03.002.

Aamand J., Gavrilescu M., Agathos S., Fava F. Emerg-ing pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology. 2015. V. 32(1). P. 147–156. DOI: 10.1016/j.nbt. 2014.01.001.

Philip J.M., Aravind U.K., Aravindakumar C.T. Emerging Contaminants in Indian Environmental Matrices A Re-view. Chemosphere. 2018. V. 190. January 2018. P. 307-326. DOI: 10.1016/j.chemosphere.2017.09.120.

Peñaguzmán C., Ulloasánchez S., Mora K., Helenabustos R., Lopez-barrera E., Alvarez J. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. J. Environ. Manag. 2019. V. 237. P. 408–423. DOI: 10.1016/j.jenvman.2019.02.100.

Shamar J.M. Separation and Identification of Naphthalene, Acenaphthylene, Pyrene, Benz{a} Anthracene and 1,3,2,4-Dibenzanthracene. J. Al-Nahrain Univ. Sci. 2009. V. 12(4). P. 14–24. DOI: 10.22401/JNUS.12.4.03.

Shamar J.M. Determination of some phenols in Tigris River by HPLC. Ibn. Al-Haitham J. Pure Appl. Sci. 2013. 26(1). P. 250–8.

Pe S., Kantiani L. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends in Analyt. Chem. 2008. V. 27(11). P. 991–1007. DOI: 10.1016/j.trac.2008.09.010.

Poynton H.C., Robinson W.E. Contaminants of Emerging Concern, With an Emphasis on Nanomaterials and Pharmaceuticals. In: Green Chemistry. Elsevier Inc. 2018. P. 291–315. DOI: 10.1016/B978-0-12-809270-5.00012-1.

Jasim W.A., Salman J.D., Jamur J.M.S. Flame atomic absorption spectrophotometry analysis of heavy metals in some food additives available in baghdad markets, Iraq. Indian J. Forensic Med. Toxicol. 2020. V. 14(2). P. 451–456.

Jamur J.M.S. Optimization of plasma-assisted desorption / ionization- mass spectrometry for analysis of ibuprofen. Industrial laboratory. Diagnostics of materials. 2023. 89(7). P. 21–24. DOI: 10.26896/1028-6861-2023-89-7-21-24.

Monteiro S.C., Boxall A.B.A. Occurrence and Fate of Human Pharmaceuticals in the Environment. In: Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology. 2010. V. 202. New York: Springer. DOI: 10.1007/978-1-4419-1157-5_2.

Bernhardt E.S., Rosi E.J., Gessner M.O. Synthetic chemicals as agents of global change. Front. in ecology and the environ. 2017. V. 15. Iss. 2. P. 84-90. DOI: 10.1002/fee.1450.

Jamur J.M.S. Raman spectroscopy analysis for monitoring of chemical composition of aspirin after exposure to plasma flame. Spectroscopy Europe/World. 2022. V. 34(5). P. 18–22. DOI: 10.1255/sew.2022.a15.

Carvalho I.T., Santos L. Antibiotics in the aquatic environments: A review of the European scenario. Environ Int. 2016. V. 94. P. 736–757. DOI: 10.1016/j.envint.2016.06.025.

Grenni P., Ancona V., Barra Caracciolo A. Ecological effects of antibiotics on natural ecosystems: A review. Mi-crochem. J. 2018. V. 136. P. 25–39. DOI: 10.1016/j.microc. 2017.02.006.

Blanco G., Junza A., Barrón D. Occurrence of veterinary pharmaceuticals in golden eagle nestlings: Unnoticed scavenging on livestock carcasses and other potential exposure routes. Sci. Total Environ. 2017. V. 586. P. 355–361. DOI: 10.1016/j.scitotenv.2017.02.023.

Ekpeghere K.I., Lee J.W., Kim H.Y., Shin S.K., Oh J.E. Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere. 2017. V. 168. P. 1211–1221. DOI: 10.1016/j.chemosphere.2016.10.077.

Gros M., Marti E., Balcázar J.L., Boy-Roura M., Busquets A., Colón J. Fate of pharmaceuticals and antibiotic resistance genes in a full-scale on-farm livestock waste treatment plant. J. Hazard. Mater. 2019. V. 378(June). 120716. DOI: 10.1016/j.jhazmat.2019.05.109.

Ramírez-Morales D., Masís-Mora M., Beita-Sandí W., Montiel-Mora J.R., Fernández-Fernández E., Méndez-Rivera M. Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ec otoxicity in a swine pro-duction area in Costa Rica. Chemosphere. 2021. V. 272. 129574. DOI: 10.1016/j.chemosphere.2021.129574.

Sui Q., Cao X., Lu S., Zhao W., Qiu Z., Yu G. Occur-rence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerg. Contam. 2015. V. 1(1). P. 14–24. DOI: 10.1016/j.emcon.2015.07.001.

Deo R.P. Pharmaceuticals in the Surface Water of the USA: A Review. Curr. Environ. Heal. Reports. 2014. V. 1(2). P. 113–22. DOI: 10.1007/s40572-014-0015-y.

Furlong E.T., Batt A.L., Glassmeyer S.T., Noriega M.C., Kolpin D.W., Mash H. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: Pharmaceuticals. Sci. Total Environ. 2017. V. 579. P. 1629–1642. DOI: 10.1016/j.scitotenv. 2016.03.128.

Ojemaye C.Y., Petrik L. Pharmaceuticals in the marine environment: A review. Environ. Rev. 2019. V. 27(2). P. 51–65. DOI: 10.1139/er-2018-0054.

Reis-santos P., Pais M., Duarte B., Caçador I., Freitas A., Vila A.S. Screening of human and veterinary pharma-ceuticals in estuarine waters : A baseline assessment for the Tejo estuary. Mar. Pollut. Bull. 2018. V. 135(August). P. 1079–1084. DOI: 10.1016/j.marpolbul.2018.08.036.

Fekadu S., Alemayehu E., Dewil R., Van der Bruggen B. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Sci. Total Environ. 2019. V. 654. P. 324–337. DOI: 10.1016/j.scitotenv. 2018.11.072.

Letsinger S., Kay P., Rodríguez-mozaz S., Villagrassa M., Barceló D., Rotchell J.M. Science of the Total Envi-ronment Spatial and temporal occurrence of pharmaceuticals in UK estuaries. Sci. of The Total Environ. 2019. V. 678. P. 74–84. DOI: 10.1016/j.scitotenv.2019.04.182.

Zainab S.M., Junaid M., Xu N., Malik R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020. V. 187. P. 116455. DOI: 10.1016/j.watres.2020.116455.

Danner M.C., Robertson A., Behrends V., Reiss J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019. V. 664. P. 793–804. DOI: 10.1016/ j.scitotenv.2019.01.406.

Dhangar K, Kumar M. Tricks and tracks in removal of emerging contaminants from the wastewater through hy-brid treatment systems: A review. Sci. Total Environ. 2020. V. 738. P. 140320. 10.1016/j.scitotenv.2020.140320.

Valdez-Carrillo M., Abrell L., Ramírez-Hernández J., Reyes-López J.A., Carreón-Diazconti C. Pharmaceuti-cals as emerging contaminants in the aquatic environment of Latin America: a review. Environ. Sci. Pollut. Res. 2020. V. 27(36). P. 44863–44891. DOI: 10.1007/s11356-020-10842-9.

Chaturvedi P., Shukla P., Giri B.S., Chowdhary P., Chandra R., Gupta P. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ Res. 2021. V. 194. P. 110664. DOI: 10.1016/j.envres.2020.110664.

Rathi B.S., Kumar P.S., Show P.L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021. V. 409. P. 124413. DOI: 10.1016/j.jhazmat.2020.124413.

Gil A., García A.M., Fernández M., Vicente M.A., González-Rodríguez B., Rives V. Effect of dopants on the structure of titanium oxide used as a photocatalyst for the removal of emergent contaminants. J. Ind. Eng. Chem. 2017. V. 53. P. 183–191. DOI: 10.1016/j.jiec.2017.04.024.

Kim Y., Jung J., Kim M., Park J., Boxall A.B.A., Choi K. Prioritizing veterinary pharmaceuticals for aquatic envi-ronment in Korea. Environ. Toxicol. Pharmacol. 2008. V. 26(2). P. 167–176. DOI: 10.1016/j.etap.2008.03.006.

Barrios-Estrada C., de Jesús Rostro-Alanis M., Muñoz-Gutiérrez B.D., Iqbal H.M.N., Kannan S., Parra-Saldívar R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation – A review. Sci. Total Environ. 2018. V. 612. P. 1516–1531. DOI: 10.1016/j.scitotenv.2017.09.013.

Lin A.Y.C., Yu T.H., Lin C.F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere. 2008. V. 74(1). P. 131–141. DOI: 10.1016/j.chemosphere.2008.08.027.

Lin A.Y.C., Tsai Y.T. Occurrence of pharmaceuticals in Taiwan’s surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Sci. Total Environ. 2009. V. 407(12). P. 3793–3802. DOI: 10.1016/j.scitotenv.2009.03.009.

Phillips P.J., Smith S.G., Kolpin D.W., Zaugg S.D., Buxton H.T., Furlong E.T. Pharmaceutical formulation facili-ties as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. Environ. Sci. Tech-nol. 2010. V. 44(13). P. 4910–4916. DOI: 10.1021/es100356f.

Prasse C., Schlüsener M.P., Schulz R., Ternes T.A. Antiviral drugs in wastewater and surface waters: A new pharmaceutical class of environmental relevance? Environ Sci Technol. 2010. V. 44(5). P. 1728–1735. DOI: 10.1021/es903216p.

Sim W.J., Lee J.W., Lee E.S., Shin S.K., Hwang S.R., Oh J.E. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere. 2011. V. 82(2). P. 179–186. DOI: 10.1016/j.chemosphere.2010.10.026.

Cardoso O., Porcher J.M., Sanchez W. Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: Review of evidence and need for knowledge. Chemosphere. 2014. V. 115(1). P. 20–30. DOI: 10.1016/j.chemosphere.2014.02.004.

Gy B., Leknes H., Liltved H., Thomas K.V. Science of the Total Environment Diurnal variations in the occurrence and the fate of hormones and antibiotics in activated sludge wastewater treatment in Oslo, Norway. Sci. Total Environ. 2010. V. 408(8). P. 1915–1924. DOI: 10.1016/j.scitotenv. 2010.01.042.

Salgado R., Marques R., Noronha J.P., Mexia J.T., Carvalho G., Oehmen A. Assessing the diurnal variability of pharmaceutical and personal care products in a full-scale activated sludge plant. Environ. Pollut. 2011. V. 159(10). P. 2359–2367. DOI: 10.1016/j.envpol.2011.07.004.

Coutu S., Wyrsch V., Wynn H.K., Rossi L., Barry D.A. Science of the Total Environment Temporal dynamics of antibiotics in wastewater treatment plant in fl uent. Sci. Total Environ. 2013. V. 458–460. P. 20–26. DOI: 10.1016/j.scitotenv.2013.04.017.

Li W., Zhang Z., Ma W., Liu L., Song W., Li Y. Science of the Total Environment An evaluation on the intra-day dynamics , seasonal variations and removal of selected pharmaceuticals and personal care products from urban wastewater treatment plants. Sci. Total Environ. 2018. V. 640–641. P. 1139–1147. DOI: 10.1016/j.scitotenv.2018.05.362.

Duan L., Zhang Y., Wang B., Deng S., Huang J., Wang Y. Occurrence, elimination, enantiomeric distribution and intra-day variations of chiral pharmaceuticals in major wastewater treatment plants in Beijing, China. Environ. Pollut. 2018. V. 239. P. 473–482. DOI: 10.1016/j.envpol.2018.04.014.

Paíga P., Correia M., João M., Silva A., Carvalho M., Vieira J. Science of the Total Environment Assessment of 83 pharmaceuticals in WWTP in fl uent and ef fl uent samples by UHPLC-MS / MS : Hourly variation. Sci. of The Total Environ. 2019. V. 648. P. 582–600. DOI: 10.1016/j.scitotenv. 2018.08.129.

Fork M.L., Fick J.B., Reisinger A.J., Rosi E.J. Dosing the Coast: Leaking Sewage Infrastructure Delivers Large Annual Doses and Dynamic Mixtures of Pharmaceuticals to Urban Rivers. Environ. Sci. Technol. 2021. 55 (17). P. 11637–11645. DOI: 10.1021/acs.est.1c00379.

Zhi H, Kolpin DW, Klaper RD, Luke R, Meppelink SM, Lefevre GH. Occurrence and Spatiotemporal Dynamics of Pharmaceuticals in a Temperate-region Wastewater Effluent-dominated Stream : Variable Inputs and Differential Attenuation. Environ. Sci. Technol. 2020. 54 (20). P. 12967–12978. DOI: 10.1021/acs.est.0c02328.

Jaeger A., Posselt M., Betterle A., Schaper J., Mechelke J., Coll C. Spatial and temporal variability in attenuation of polar organic micropollutants in an urban lowland stream. Environ. Sci. Technol. 2019. 53 (5). P. 2383–2395. DOI: 10.1021/ acs.est.8b05488.

Burns E.E., Carter L.J., Kolpin D.W., Thomasoates J., Alistair B.A. Temporal and spatial variation in pharma-ceutical concentrations in an urban river system. Water Res. 2018. V. 137. P. 72-85. DOI: 10.1016/j.watres.2018.02.066.

Richmond E.K., Grace M.R., Kelly J.J., Reisinger A.J., Rosi E.J., Walters D.M. Pharmaceuticals and personal care products (PPCPs) are ecological disrupting com-pounds (EcoDC). Elementa: Sci. of the Anthrop. 2017. 5. P. 66. DOI: 10.1525/elementa.252.

Kolpin D.W., Skopec M., Meyer M.T., Furlong E.T., Zaugg S.D. Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Sci. of The Total Environ. 2004. V. 328. P. 119–130. DOI: 10.1016/j.scitotenv.2004.01.015.

Buelow E., Bayjanov J.R., Majoor E., Willems R.J.L., Bonten M.J.M., Schmitt H. Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system. FEMS Microbiol. Ecol. 2018. V. 94(7). fiy087. DOI: 10.1093/femsec/fiy087.

Ogwugwa V.H., Oyetibo G.O., Amund O.O. Taxonomic profiling of bacteria and fungi in freshwater sewer receiving hospital wastewater. Environ. Res. 2021. V. 192. P. 110319. DOI: 10.1016/j.envres.2020.110319.

Palanisamy V., Gajendiran V., Mani K. Metaanalysis to identify the core microbiome in diverse wastewater. Int. J. Environ. Sci. Technol. 2022. V. 19(6). P. 5079–5096. DOI: 10.1007/s13762-021-03349-4.

Medvedeva I.V., Medvedeva O.M., Studenok A.G., Studenok G.A., Tseytlin E.M. New Composite Materials and Processes for Chemical, Physico-Chemical and Biochemical Technologies of Water Purification. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 1. P. 6–27. DOI: 10.6060/ivkkt.20236601.6538.

Comber S., Gardner M., Sörme P., Leverett D., Ellor B. Active pharmaceutical ingredients entering the aquatic environment from wastewater treatment works: A cause for concern? Sci. Total Environ. 2018. V. 613–614. P. 538–547. DOI: 10.1016/j.scitotenv.2017.09.101.

Ternes T. Pharmaceuticals and metabolites as contaminants of the aquatic environment - An overview. ACS Div. Environ. Chem. Prepr. 2000. V. 40(1). P. 98–100.

Courtheyn D., Le Bizec B., Brambilla G., De Brabander H.F., Cobbaert E., Van De Wiele M. Recent develop-ments in the use and abuse of growth promoters. Anal. Chim. Acta. 2002. V. 473(1–2). P. 71–82. DOI: 10.1016/S0003-2670(02) 00753-5.

Bártíková H., Podlipná R., Skálová L. Veterinary drugs in the environment and their toxicity to plants. Chemo-sphere. 2016. V. 144. P. 2290–2301. DOI: 10.1016/j.chemosphere. 2015.10.137.

Ben Maamar M., Lesné L., Hennig K., Desdoits-Lethimonier C., Kilcoyne K.R., Coiffec I. Ibuprofen results in alterations of human fetal testis development. Sci. Rep. 2017. V. 7. P. 1–15. DOI: 10.1038/srep44184.

Morelli K.M., Brown L.B., Warren G. L. Effect of NSAIDs on Recovery From Acute Skeletal Muscle Injury: A Systematic Review and Metaanalysis. Am. J. Sports Med. 2018. V. 46(1). P. 224–33. DOI: 10.1177/0363546517697957.

Borgeat A., Ofner C., Saporito A., Farshad M., Aguirre J. The effect of nonsteroidal anti-inflammatory drugs on bone healing in humans: A qualitative, systematic review. J. Clin. Anesth. 2018. V. 49. P. 92–100. DOI: 10.1016/j.jclinane. 2018.06.020.

Hurtado-Gonzalez P., Anderson R.A., Macdonald J., van den Driesche S., Kilcoyne K., Jørgensen A. Effects of exposure to Acetaminophen and Ibuprofen on fetal germ cell development in both sexes in rodent and human using multiple experimental systems. Environ. Health Perspect. 2018. V. 126(4). P. 1–17. DOI: 10.1289/EHP2307.

Balakrishna K., Rath A., Praveenkumarreddy Y., Guruge K.S., Subedi B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf. 2017. V. 137. P. 113–120. DOI: 10.1016/j.ecoenv.2016.11.014.

Świacka K., Michnowska A., Maculewicz J., Caban M., Smolarz K. Toxic effects of NSAIDs in non-target spe-cies: A review from the perspective of the aquatic environment. Environ. Pollut. 2021. V. 273. P. 115891. DOI: 10.1016/j.envpol. 2020.115891.

Shamar J., Abbas S., Abbas Z. Analytical Methods for Determination of Ketoprofen Drug: A review. Ibn AL-Haitham J. Pure Appl. Sci. 2022. V. 35(3). P. 76–82. DOI: 10.30526/ 35.3.2842.

Parolini M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, parace-tamol, diclofenac, ibuprofen and naproxen towards fresh-water invertebrates: A review. Sci. Total Environ. 2020. V. 740. P. 140043. DOI: 10.1016/j.scitotenv.2020.140043.

Subedi B., Balakrishna K., Sinha R.K., Yamashita N., Balasubramanian V.G., Kannan K. Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India. J. Environ. Chem. Eng. 2015. V. 3(Part 4A). P. 2882–2891. DOI: 10.1016/j.jece.2015.09.031.

Sharma B.M., Bečanová J., Scheringer M., Sharma A., Bharat G.K., Whitehead P.G. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci. Total Environ. 2019. V. 646. P. 1459–1467. DOI: 10.1016/j.scitotenv.2018.07.235.

Mutiyar P.K., Gupta S.K., Mittal A.K. Fate of pharma-ceutical active compounds (PhACs) from River Yamuna, India: An ecotoxicological risk assessment approach. Ecotoxicol. Environ. Saf. 2018. V. 150. P. 297–304. DOI: 10.1016/ j.ecoenv.2017.12.041.

Rivera-Jaimes J.A., Postigo C., Melgoza-Alemán R.M., Aceña J., Barceló D., López de Alda M. Study of phar-maceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Sci. Total Environ. 2018. V. 613–614. P. 1263–1274. DOI: 10.1016/j.scitotenv.2017.09.134.

Ali A.M., Rønning H.T., Al Arif W.M., Kallenborn R,. Kallenborn R. Occurrence of pharmaceuticals and per-sonal care products in effluent-dominated Saudi Arabian coastal waters of the Red Sea. Chemosphere. 2017. V. 175. P. 505–513. DOI: 10.1016/j.chemosphere.2017.02.095.

Pereira C.D.S., Maranho L.A., Cortez F.S., Pusceddu F.H., Santos A.R., Ribeiro D.A. Occurrence of pharma-ceuticals and cocaine in a Brazilian coastal zone. Sci. Total Environ. 2016. V. 548–549. P. 148–154. DOI: 10.1016/j.scitotenv.2016.01.051.

González-Alonso S., Merino L.M., Esteban S., López de Alda M., Barceló D., Durán J.J. Occurrence of pharma-ceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environ. Pollut. 2017. 229. P. 241–254. DOI: 10.1016/j.envpol. 2017.05.060.

Mohammed M.A., Abbas S.M., Jamur J.M.S. Derivative spectrophotometric determination for simultaneous estima-tion of isoniazid and ciprofloxacin in mixture and pharmaceutical formulation. Methods Objects Chem. Anal. 2020. V. 15(3). P. 105–110. DOI: 10.17721/moca.2020.105-110.

Abbas S.M., Jamur J.M.S., Nasif A.M. Spectrophotomet-ric Method for the Determination of Metoclopramide in Pharmaceutical Forms. J. Appl. Spectrosc. 2021. V. 88(2). P. 433–440. DOI: 10.1007/s10812-021-01191-7.

Gothwal R., Shashidhar T. Antibiotic Pollution in the Environment: A Review. Clean - Soil, Air, Water. 2015. V. 43(4). P. 479–489. DOI: 10.1002/clen.201300989.

Bengtsson-Palme J., Larsson D.G.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016. V. 86. P. 140–149. DOI: 10.1016/j.envint.2015.10.015.

González-Pleiter M., Gonzalo S., Rodea-Palomares I., Leganés F., Rosal R., Boltes K. Toxicity of five antibiot-ics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 2013. V. 47(6). P. 2050–2064. DOI: 10.1016/j.watres.2013.01.020.

Brain R.A., Hanson M.L., Solomon K.R., Brooks B.W. Aquatic plants exposed to pharmaceuticals: Effects and risks. Rev. Environ. Contam. Toxicol. 2008. V. 192. P. 67–115. DOI: 10.1007/978-0-387-71724-1_3.

Brausch J.M., Connors K.A., Brooks B.W., Rand G.M. Human Pharmaceuticals in the Aquatic Environment: A Review of Recent Toxicological Studies and Considerations for Toxicity Testing. Rev. of Environ. Contamin. and Toxicol. 2012. V. 218. P. 1–99. DOI: 10.1007/978-1-4614-3137-4_1.

Nie X.P., Liu B.Y., Yu H.J., Liu W.Q., Yang Y.F. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ. Pollut. 2013. V. 172. P. 23–32. DOI: 10.1016/j.envpol.2012.08.013.

Nadimpalli M.L., Marks S.J., Montealegre M.C., Gilman R.H., Pajuelo M.J., Saito M. Urban informal settle-ments as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat. Microbiol. 2020. V. 5(6). P. 787–795. DOI: 10.1038/s41564-020-0722-0.

Hu Y., Jiang L., Sun X., Wu J., Ma L., Zhou Y. Risk assessment of antibiotic resistance genes in the drinking water system. Sci. Total Environ. 2021. V. 800. 149650. DOI: 10.1016/j.scitotenv.2021.149650.

Amos G.C.A., Ploumakis S., Zhang L., Hawkey P.M., Gaze W.H., Wellington E.M.H. The widespread dissemi-nation of integrons throughout bacterial communities in a riverine system. ISME J. 2018. V. 12(3). P. 681–691. DOI: 10.1038/s41396-017-0030-8.

Freeman C.N., Scriver L., Neudorf K.D., Hansen L.T., Jamieson R.C., Yost C.K. Antimicrobial resistance gene surveillance in the receiving waters of an upgraded wastewater treatment plant. Facets. 2018. V. 3(1). P. 128–138. DOI: 10.1139/facets-2017-0085.

Jäger T., Hembach N., Elpers C., Wieland A., Alexan-der J., Hiller C. Reduction of Antibiotic Resistant Bacteria During Conventional and Advanced Wastewater Treatment, and the Disseminated Loads Released to the Environment. Front Microbiol. 2018. V. 9. P. 1–16. DOI: 10.3389/fmicb.2018.02599.

Karkman A., Do T.T., Walsh F., Virta M.P.J. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2018. V. 26(3). P. 220–228. DOI: 10.1016/j.tim.2017.09.005.

Liu L., Su J.Q., Guo Y., Wilkinson D.M., Liu Z., Zhu Y.G. Largescale biogeographical patterns of bacterial an-tibiotic resistome in the waterbodies of China. Environ. Int. 2018. V. 117. P. 292–299. DOI: 10.1016/j.envint.2018.05.023.

Zhang Q.Q., Ying G.G., Pan C.G., Liu Y.S., Zhao J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci Technol. 2015. 49(11). P. 6772–6782. DOI: 10.1021/acs.est.5b00729.

Pan M., Chu L.M. Fate of antibiotics in soil and their uptake by edible crops. Sci. Total Environ. 2017. V. 599–600. P. 500–512. DOI: 10.1016/j.scitotenv.2017.04.214.

Hanna N., Sun P., Sun Q., Li X., Yang X., Ji X. Presence of antibiotic residues in various environmental compart-ments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environ. Int. 2018. V. 114. P. 131–142. DOI: 10.1016/j.envint.2018.02.003.

Bondarczuk K., Piotrowska-Seget Z. Microbial diversity and antibiotic resistance in a final effluent-receiving lake. Sci. Total Environ. 2019. V. 650. P. 2951–2961. DOI: 10.1016/j.scitotenv.2018.10.050.

Peng X., Yu Y., Tang C., Tan J., Huang Q., Wang Z. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total Environ. 2008. V. 397(1–3). P. 158–166. DOI: 10.1016/j.scitotenv.2008.02.059.

Valcárcel Y., González Alonso S., Rodríguez-Gil J.L., Gil A., Catalá M. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemo-sphere. 2011. V. 84(10). P. 1336–1348. DOI: 10.1016/j.chemosphere.2011.05.014.

López-Serna R., Jurado A., Vázquez-Suñé E., Carrera J., Petrović M., Barceló D. Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environ. Pollut. 2013. V. 174. P. 305–315. DOI: 10.1016/j.envpol.2012.11.022.

Bilal M., Mehmood S., Rasheed T., Iqbal H.M.N. Antibiotics traces in the aquatic environment: persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Heal. 2020. V. 13. P. 68–74. DOI: 10.1016/j.coesh.2019.11.005.

Ngumba E., Gachanja A., Tuhkanen T. Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Sci. Total Environ. 2016. V. 539. P. 206–213. DOI: 10.1016/j.scitotenv.2015.08.139.

Abafe O.A., Späth J., Fick J., Jansson S., Buckley C., Stark A. LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa. Chemosphere. 2018. V. 200. P. 660–670. DOI: 10.1016/j.chemosphere.2018.02.105.

Rimayi C., Odusanya D., Weiss J.M., de Boer J., Chimuka L. Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River es-tuary 2016 pollution incident, South Africa. Sci. Total Environ. 2018. V. 627. P. 1008–1017. DOI: 10.1016/j.scitotenv.2018.01.263.

Mosekiemang TT, Stander MA, de Villiers A. Simultane-ous quantification of commonly prescribed antiretroviral drugs and their selected metabolites in aqueous environmental samples by direct injection and solid phase extraction liquid chromatography - tandem mass spectrometry. Chemosphere. 2019. V. 220. P. 983–992. DOI: 10.1016/j.chemosphere.2018.12.205.

Mahlambi S.P., Mahlambi P.N., Madikizela L.M. Synthesis and application of a molecularly imprinted polymer in selective solid-phase extraction of efavirenz from water. Water Sci. Technol. 2019. V. 79(2). P. 356–365. DOI: 10.2166/wst.2019.054.

Hawkins T. Understanding and managing the adverse effects of antiretroviral therapy. Antiviral. Res. 2010. V. 85(1). P. 201–209. DOI: 10.1016/j.antiviral.2009.10.016.

Ncube S., Madikizela L.M., Chimuka L., Nindi M.M. Environmental fate and ecotoxicological effects of an-tiretrovirals: A current global status and future perspectives. Water Res. 2018. V. 145. P. 231–247. DOI: 10.1016/j.watres.2018.08.017.

Mlunguza N.Y., Ncube S., Mahlambi P.N., Chimuka L., Madikizela L.M. Determination of selected antiretroviral drugs in wastewater, surface water and aquatic plants using hollow fibre liquid phase microextraction and liquid chromatography - tandem mass spectrometry. J. Hazard. Mater. 2020. V. 382. P. 121067. DOI: 10.1016/j.jhazmat.2019.121067.

Daouk S., Chèvre N., Vernaz N., Bonnabry P., Dayer P., Daali Y. Prioritization methodology for the monitoring of active pharmaceutical ingredients in hospital effluents. J. Environ. Manage. 2015. V. 160. P. 324–332. DOI: 10.1016/j.jenvman.2015.06.037.

Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J., Rosso S., Coebergh J.W.W., Comber H. Cancer inci-dence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer. 2013. V. 49(6). P. 1374–1403. DOI: 10.1016/j.ejca.2012.12.027.

Nassour C., Barton S.J., Nabhani-Gebara S., Saab Y., Barker J. Occurrence of anticancer drugs in the aquatic environment: a systematic review. Environ. Sci. Pollut. Res. 2020. V. 27(2). P. 1339–1347. DOI: 10.1007/s11356-019-07045-2.

Verlicchi P., Galletti A., Petrovic M., BarcelÓ D. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J. Hydrol. 2010. V. 389(3–4). P. 416–428. DOI: 10.1016/j.jhydrol.2010.06.005.

Cristóvão M.B., Torrejais J., Janssens R., Luis P., Van der Bruggen B., Dubey K.K. Treatment of anticancer drugs in hospital and wastewater effluents using nanofiltration. Sep. Purif. Technol. 2019. V. 224. P. 273–280. DOI: 10.1016/j.seppur.2019.05.016.

Bernabeu-Martínez M.A., Merino M.R., Santos Gago J.M., Alvarez Sabucedo L.M., Wanden-Berghe C., Sanz-Valero J. Guidelines for safe handling of hazardous drugs: A systematic review. PLoS One. 2018. V. 13(5). P. 1–24. DOI: 10.1371/journal.pone.0197172.

Yadav A., Rene E.R., Mandal M.K., Dubey K.K. Threat and sustainable technological solution for antineoplastic drugs pollution: Review on a persisting global issue. Chemosphere. 2021. V. 263. P. 128285. DOI: 10.1016/j.chemosphere.2020.128285.

Madureira T.V., Rocha M.J., Cass Q.B., Tiritan M.E. Development and optimization of a HPLC-DAD method for the determination of diverse pharmaceuticals in estuarine surface waters. J. Chromatogr. Sci. 2010. V. 48(3). P. 176–182. DOI: 10.1093/chromsci/48.3.176.

Al-Qaim F.F., Abdullah M.P., Othman M.R., Latip J., Afiq W.M. Development of analytical method for detection of some pharmaceuticals in surface water. Trop. J. Pharm. Res. 2013. V. 12(4). P. 609–616. DOI: 10.4314/tjpr.v12i4.25.

Fick J., Söderström H., Lindberg R.H., Phan C., Tysklind M., Larsson D.G.J. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 2009. V. 28(12). P. 2522–2527. DOI: 10.1897/09-073.1.

Guzel E.Y., Cevik F., Daglioglu N. Determination of pharmaceutical active compounds in Ceyhan River, Turkey: Seasonal, spatial variations and environmental risk assessment. Hum. Ecol. Risk Assess. 2019. V. 25(8). P. 1980–1995. DOI: 10.1080/10807039.2018.1479631.

Zhang Y., Lin L., Li Y., Zeng Q., Guo S., Nkinahamira F. Determination of 38 pharmaceuticals and personal care products in water by lyophilization combined with liquid chromatography-tandem mass spectrometry. Anal. Methods. 2021. V. 13(3). P. 299–310. DOI: 10.1039/D0AY02022B.

Beatriz B., Raquel de O.V., Mariana M.F., Victor C., Allan M.J., Josiane M.M.F.S. HPLC-MS/MS Method for Quantification of Pharmaceuticals in Subtropical Rivers and Water Treatment Plants in Brazil. J. Environ. Sci. Pub-lic Heal. 2020. V. 04(04). P. 390–408. DOI: 10.26502/jesph.96120109.

Baranowska I., Kowalski B. Using HPLC method with DAD detection for the simultaneous determination of 15 drugs in surface water and wastewater. Polish J. Environ. Stud. 2011. V. 20(1). P. 21–28.

Radović T., Grujić S., Petković A., Dimkić M., Laušević M. Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia. Environ. Monit Assess. 2015. V. 187(1). 4092. DOI: 10.1007/s10661-014-4092-z.

Togola A., Budzinski H. Analytical development for analysis of pharmaceuticals in water samples by SPE and GC-MS. Anal. Bioanal. Chem. 2007. V. 388(3). P. 627–635. DOI: 10.1007/s00216-007-1251-x.

Rutten F., Jamur J., Roach P. Fast and versatile ambient surface analysis by plasma-assisted desorption/ionisation mass spectrometry. Spectrosc. Eur. 2015. V. 27(6). P. 10. DOI: 10.1255/sew. 2015.a2.

Hao C., Lissemore L., Nguyen B., Kleywegt S., Yang P., Solomon K. Determination of pharmaceuticals in environmental waters by liquid chromatography/electrospray ionization/tandem mass spectrometry. Anal. Bioanal. Chem. 2006. V. 384(2). P. 505–513. DOI: 10.1007/s00216-005-0199-y.

Torrespalma R.A., Boterocoy A.M., Nietoju J.I. Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environ. Internat. 2021. V. 155. 106674. DOI: 10.1016/j.envint.2021.106674.

Lin W.C., Chen H.C., Ding W.H. Determination of pharmaceutical residues in waters by solid-phase extraction and large-volume online derivatization with gas chromatography-mass spectrometry. J. Chromatogr. A. 2005. V. 1065(2). P. 279–285. DOI: 10.1016/j.chroma.2004.12.081.

Abbas S.M., Jamur J.M.S., Sallal T.D. Indirect spectro-photometric determination of mebendazole using n-bromosuccinimide as an oxidant and tartarazine dye as analytical reagent. Egypt J. Chem. 2021. V. 64(9). P. 4913–4917.

Ohgi K., Hayashi Y., Tsuji T., Ito T., Leong K.H., Usu-da S. Time-domain NMR analysis for the determination of water content in pharmaceutical ingredients and wet granules. Int. J. Pharm. 2021. V. 604. P. 120770. DOI: 10.1016/j.ijpharm. 2021.120770.

Опубликован
2024-04-04
Как цитировать
Jamur, J. M. (2024). АНАЛИТИЧЕСКИЕ МЕТОДЫ ДЛЯ ОЦЕНКИ ФАРМАЦЕВТИЧЕСКОГО ЗАГРЯЗНЕНИЯ РЕК МИРА; ОБЗОР. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 67(5), 6-16. https://doi.org/10.6060/ivkkt.20246705.7017
Раздел
Обзорные статьи