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PACYET COCTABOB ITPOAYKTOBBIX IIOTOKOB
CJIOXKHBIX PEKTUOGUKAIIMOHHBIX CUCTEM HA OCHOBE
PACHIMPEHHOM BEPCHUU MIPUHIIUIIA MAKCUMAJIBHOM SHTPOIIUH
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Ilpeonosicen memoo pacuema nauboiee 6EpOAMHBIX COCMABOE NPOOYKMOE pA30e1eHUA
AmMePMANbHBIX CMeceil 8 CONCHBIX PEKMUPUKAUUOHHBIX CUCMEMAX, K KOMOPbIM OMHOCAMCA CU-
CcHembl RPOCHBIX KOJIOHH C PEUUKIAMU U 0e3 HUX, CTIOMCHbIE KOJIOHHbL ¢ DOKOGbIMU Ombopamu, cu-
CHIEMBL CO C8A3AHHBIMU MEN06bIMU HOMOKamu u opyzue. B ocnose memooa nexycum pacuupennan
6epcust NPUHUUNA MAKCUMANbHOU IHmponuu. B xauecmee kpumepus npagdonooobus ucnonw3y-
emca UH@OPMAUUOHHASL IHMPONUA CLONCHOZ0 ONBIMA C NPUGTEYEHUEM YCTI08HOI IHMPORUU U
ycnosuvix eepoamuocmeil. Ilpunaman axcuomamuxa no3eonsnem noaydyums Hauboiee geposmmole
pacnpeoenienus KOMROHEHMO08 8 NPOOYKMOBbIX HOMOKAX CUCHIEMbl, KOMOPOe OMmeeuaem MaKCUMYMY
IHMPONUU CNLOIHCHOZO ONBIMA NPU COONIOOeHUU Oanancoevix ozpanuuenuil. Ilokazano, umo yuem
AmepManbHbIX CEOUCHE CMeCU NPUBOOUM K 3AGUCUMOCIAM, 6 KOMOPble 6X00m IHMPONUIIHbIE KO-
Ippuyuenmsl akmueHoCmU, C6A3AHHDBLIE C YCA0BHOI IHMPORUEH, 8 XAPAKMEPHOIUL 0J151 MEPMOOUHA-
Muxu ghopme. 3agucumocmu 05 UOEANbHBIX CMECEll OKAZbIBAIOMCS YWACHHBIM CYYAEM ROJIYYEHHBIX
coomnowenuit. /lan cnoco6 pacuema IHMPORUIHBIX KOIPDUUUEHMO8 AKMUSHOCIU KAK QYHKUUTL
OMHOCUMETILHBIX 00bEMO08 MOJIEKYl KOMHOHEHMO08 U MOIbHO20 cocmasa cmecu. Ilpednosicennwiii
Memoo OpueHmuposan Ha NPOEKMHLII 6APUAHM PACUema PeKMUPUKayuounou cucmemsl. On nos-
60J151em NPU 3A0AHHBIX 0ZPAHUYEHUAX HA KAYEeCME0 NPOOYKHI08 ONpedeumb napamempul, Xapaxkme-
pusyloujue npomAICEHHOCHb RPOYeccd (YUC10 meopemudecKux CmyneHeil pa3oeienus 6 6e3omoop-
HOM pexcume), U COCIMABbl RPOOYKMOBIX HOMOKO0E. Yuem amepmaibHOCIU cMecu RPUEOOUm K yée-
JIUYEHUIO RPOMANCEHHOCHU NPOUECCAa U He OKA3bI8AEM CYUeCMEEHHO20 G/IUAHUA HA COCMAGLL HPO-
oykmos. /lano conocmasnenue pe3yibmamos paciema coOCmagos HPoOyKmoevix NOMoKo8 Munoeoii
2a30hpakuuonupyroueil yCmanosKu ¢ yuemom u 6e3 yuema amepmaibHulX C80ICHE Pa30esnemoll
cMecu ¢ OaHHBIMU HPOMBIUAEHHO20 IKCHEPUMEHMA.

KiroueBnble ciioBa: peKTI/Iq)I/IKaLII/Iﬂ, aTCpMalibHasA CMECh, CII0KHAA CUCTEMA, PACIIPEACIICHNC KOMIIOHCH-
TOB, IIPUHIIUII MaKCHUMAaJIbHOH SHTPOIINU, SHTPOIIUSA CIIOXKHOTO OIIbITa

COMPOSITIONS CALCULATION OF COMPLEX DISTILLATION SYSTEM PRODUCT FLOWS
BASED ON THE EXTENDED VERSION OF THE MAXIMUM ENTROPY PRINCIPLE

A.l. Balunov

Alexander I. Balunov

Department of Cybernetics, Yaroslavl State Technical University, Moscow ave., 88, Yaroslavl, 150023, Russia
E-mail: balunovai@ystu.ru

A method for calculating the most likely product compositions of athermal mixture separa-
tion in complex distillation systems, including systems of simple recycling and non-recycling col-
umns, complex columns with side sampling, systems with joint heat flows, and others. The method
is based on an extended version of the maximum entropy principle. The informational entropy of
complex experiment involving conditional entropy and conditional probabilities is used as the like-
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lihood criterion. The adopted axiomatic allows one to obtain the most probable component distri-
butions in the product flows of the system, which corresponds to the complex experience maximum
entropy in accordance with the balance restrictions. It has been demonstrated that athermal prop-
erties accounting of the mixture create dependencies that include entropic activity coefficients as-
sociated with the conditional entropy in a typical thermodynamics form. Dependencies are a special
case of the correlations obtained for ideal mixtures. The method for calculating the entropy activity
coefficients as functions of the components molecule relative volumes and the mixture molar com-
position has been provided. This method is focused on the design version of the distillation system
calculation. It allows to determine the parameters characterizing the process length (the number
of theoretical separation steps in the non-selective mode) and the product flow composition prod-
ucts under the product quality restrictions. The accounting of mixture athermal nature leads to an
increased duration of the process and has a slight impact on the product compositions. A compar-
ison is given of the results of the calculation of the composition of the product flows of a typical
gas fractionating unit with and without taking into account the athermal properties of the mixture

to be separated with the data of an industrial experiment.

Key words: distillation, athermal mixture, complex system, component distribution, maximum entropy

principle, entropy of complex experience
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ENTROPIC ACTIVITY COEFFICIENT

As it has been mentioned before, the maximum
likelihood criterion, along with Shannon's entropy,
also includes conditional entropy and conditional prob-
abilities while accounting the athermal mixture prop-
erties. By conditional probability should be meant the
probability of randomly detected particle of one type
in an athermal mixture, provided that, in the case of an
ideal mixture, a particle of another type will be de-
tected in its place. In the reference [16] we can see the
relationship between conditional probabilities and rel-
ative micro-particle sizes; and the continuity of relation
of conditional probability to the component mole frac-
tion a in a binary mixture has been established:

P12 = OX2, P21 = OXa. 1)

Here p12 is the conditional probability that par-
ticle 2 will be detected in the sequence of particles ran-
domly extracted from the athermal mixture in place of
particle 1 in the case of an ideal mixture; p.1 is the same
for second type of particle; x1, x, are the mole fractions
of components 1 and 2 in the mixture; q is the athermal
coefficient of a binary mixture, which characterizes the
degree of athermality of the mixture and does not de-
pend on the composition just the same like the 6 rela-
tive particle size.
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For an ideal binary mixture 6 = 1, g = 0 are used.
For another extreme case, when the particles differ in
size by an arbitrarily large value 6 =0, q = 1 are used.

Since the relation between the conditional
probability and the athermal coefficient is very simple
(1), it is more convenient to use athermal coefficients,
rather than relative particle sizes in practical calcula-
tions. To go from & to g, we have compiled a table of
athermal coefficients and proposed a transition to mul-
ticomponent mixtures [16]. In the latter case, a matrix
of athermal coefficients is compiled according to the

table g, (i,k =1,m) based on the analysis of the rela-
tive particle size values of each pair of multicomponent
mixture components 6, (i,k =1,m). The volume of

the largest particle is always considered as a unit.

With the athermal coefficients and the multi-
component mixture composition, it is possible to cal-
culate the conditional probabilities

' i,k=1,7m, (2)

p_ |ka / |ka
"X +xk(1 Ai)/ 5%+ % (L-0y)
where g =
The formula (2) shows that values pix depend
on the concentrations. However, when it is about solv-
ing the problem of the component distribution in the
product flows system, conditional probabilities will be
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assumed to be fixed at each step of the iterative calcu-
lation procedure.

By knowing the conditional probabilities, one
can calculate the conditional entropies related to each
component

Hi:_zpik In p;, » i=Lm, ®)
k=1
and the component entropic activity coefficients [17]
vi=ep(-H,), i=1m. (4)

To calculate the entropic activity coefficients,
according to (2)—(4), it is necessary to have a matrix of
athermal coefficients and composition of the mixture.

MOST PROBABLE COMPONENT DISTRIBUTION

Let’s consider a distillation system designed to
separate the original m-component athermal mixture
into p products (flows). Let’s define the consumption
of the j product, reduced to one mole of the source
mixture (relative molar selection of the product),
— & (j=1,p); molar concentration of the i component
in the source mixture —z (i =1, m); the molar concentration
of the i component in the j product —X; (i =1,m, j=1,p).

Let’s formulate the problem of the most prob-
able distribution of components between the product
flows of a complex distillation system. Following
Jaynes’s model, and taking into account the peculiari-
ties of the similar problem formulation in distillation
ideal mixtures [14], we will present the source infor-
mation in the following form: the molar concentration

of the i component in the j product
P

Mex =z i=1m, (5)
1
Y x =1 i=1p-1, (6)
i=1
;Y ax; =(a;), J=lp-1, (7)

i=1

where a;j = a;° — aip’; ai° is a phenomenological coeffi-
cient that evaluates the problem’s characteristic prop-
erty of the i component under the conditions (tempera-
ture and pressure) of the j product; «a) is an average
value (mathematical expectation) of coefficients a;”
for the j product.

Equations (5) follow from the material balance
of the system, and (6) — conditions for the normaliza-
tion of concentrations. The equation (6), recorded for
the flow p, was not included in the operand because it
is not independent.

Equations (7) are typical of the entropic mod-
eling method [13, 14]. They introduce the component
properties and fix the separation degree in the system
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when setting the task. The number of equations (7) cor-
responds to the number of restrictions that should be
imposed on the system (apart from material balances
and specified product selections) so that the task ac-
quire physical significance. It is assumed that the coef-
ficients a;° in equations (7) depend on the type of mol-
ecules and external parameters (temperature and pres-
sure) at the product sampling points. The problems
with phase transformations of ideal mixtures can be ex-
pressed through phase equilibrium constants and the
relative volatility component coefficients:
& —ay = (ai‘j’ -a;, )—(a,?j —aﬁp):

=In JKeKS ~In JKEKS, =Ing i=1m, j=1p-1, (8)
where K is a phase equilibrium constant of the i com-
ponent for the conditions of the j product; K, is the
same for the reference component n with the arbitrary
choice; aij is an effective coefficient of relative volatil-
ity of the i component for the j product.

The expression (8) is also true for athermal
mixtures, if the phase equilibrium constant is taken not
the ratio of equilibrium concentrations, but the ratio of
product concentrations to entropic activity coeffi-
cients [17, 18].

Therefore, the solution of this problem lies in
the determination of the product flow compositions Xi;
given g, zi, a;j, <ap. Since generally the number of di-
mensionalities is greater than the number of equations
(5)—(7), it is possible to find only the most probable
(likely) component distribution law. To evaluate the
uncertainty of the determinates we will use an extended
version of the maximum entropy principle, in which
the likelihood criterion is the complex experience en-

tropy

H =—Zp:{gj(zm:xij Inx; +Zm:xinijﬂ )]

Here Hj; is a conditional entropy related to the
i component in the j flow.

Formally, the problem is as follows: when the
values are known z; (i=1,m) and & (j=1,p), as well
as given values aj (i=1m, j=1p).@p (j=1p-1),
pid (i,k=Lm, j=1 p), the task is to find such values
Xij (i=1,m, j=1, p), which would afford the maximum
entropy (9) subject to restrictions (5)—(7).

We use the Lagrange multiplier method to
solve the problem. Introducing undetermined multipli-

ersai (i =1,m), uigj, 4 ( j =1, p) for restrictions (5)—(7),
you can come up with the following solution:
—g;(L+Inx;)+e;H; +og; +pne; +A g8, =0,

i=1lm, j=1p. (10)

101



A.l. Balunov

In the used notation Ap = ppep = 0. After that,
we have a closed system of equations (5)—(7) and (10)
to determine the unknown concentrations and La-
grange multipliers.

The solution of the obtained system of alge-
braic equations is similar to [14]. Using (5), from the
expressions (10) it is possible to exclude the multipli-
ers oi

P
X =z,00u; +ha;+Hy)/ D e emu; +A,a;+H)
=

i=1m, j=1p. (1)

In order to determine multipliers p;e; we could
use equations (6) or (7), however, we will go the other
way. In the practice of calculations, it can happen there
are no values «ay given that limit the degree of separa-
tion according to the original formulation of the prob-
lem, but the concentration of individual components in
the system product flows. Therefore, instead of p-1
equations (7), we introduce p-1 equations (11), recorded
for given concentrations Xq«. These new restrictions can
be brought to a linear equation system for exp(L;)

p-1
Z‘Sjcfj eXp(X,amJ)eXp(Hj) = _ngfp exp(}\’pamp)exp(up) !
j

f=1p-1, (12)
where f is the ordinal number of a given concentration
for each flow;

exp|?\'j(akj _amj)+ijJ’

Cy= (1_ Zy

X4 €

it j=I,

\Jexp[%‘l(akl _aml)+HkI]' if j=1I.

When solving system of linear equations (12),
we find

€, D,
exp(uj)ziexp()\‘pamp_}\‘jamj)exp(uj)D !
€j p

. p-1 . 7~ q-

where D, =det|C,| : D, =-Y" AC,: f=1p-1

Ay — algebraic matrix complement with elements Csin
the determinant D,.

Substituting the value exp(y;) into the equation
(11), taking into accounting (4) and (8), we get the final
solution:

p - -
Xj = Ziaﬁ"qui/giZaﬁ"quj ci=Lm, j=1p, (13)
i1

) oYy if j=1,
where

Cy= (1_ Z,

X €

Ja‘)kTYKI , i =L

For p = 2, we have formulas to calculate the
compositions of the athermal mixture product separa-
tion in a simple (two-product) column.
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The distribution (13) corresponds to the lin-
erithmic relation

A, =In PV Rek¥ok | S i
XoiVpi XY ik i

j=1p-1,

which is a generalization of the known in the distilla-
tion theory of the Fenske-Underwood equation. The
latter is obtained as a special case for ideal mixtures
with yji =1 (i=1,m, j =1 p). Therefore, the Lagrange
multipliers A; have the physical significance of the min-
imum number of theoretical contact stages necessary
to separate the source mixture into products from j to p
from the point of view of the equilibrium distillation
theory.

Since the final calculated dependencies con-
tain only the difference of phenomenological coeffi-
cients a;°, their point of reference does not affect the
structure of the final formulas, but leads only to a new
reference system of Lagrange multipliers introduced
for restrictions (7). This work provides the reference
coefficients a;° with their values sampled at tempera-
ture and pressure of p flow. It is convenient to use such
a reference system when the concentrations of target
components in flows are set from 1 to p-1. If under the
statement of the problem the component concentration
in one of the intermediate product flows of the system
is not fixed, then the point of reference of the coeffi-
cients a;° would be more convenient to transfer to the
temperature and pressure of this flow [14].

ALGORITHM AND CALCULATION SAMPLE

The dependencies (13) are focused on the de-
sign version of the complex system calculation. To-
gether with (6) they allow us to determine the condi-
tional depth of system elements (sections of complex
column) A; and distribution of components in product
flows xi at known parameter values zi, &, aij, Qi (
i,k=1m, j=1p), as well as predetermined concen-

trations of target components xq in p-1 separation prod-
ucts. The coefficients of the component relative vola-
tility at the beginning of the calculation are taken for
the temperature of the output flowed at the approxi-
mate estimation. Having determined the composition
of the output flows, these temperatures are elaborated
and, if necessary, recalculated.

Since the entropic activity coefficients in ex-
pressions (13) depend on the product flow composi-
tions, which are yet to be determined, the calculation
algorithm becomes iterative:

1) originally, all activity coefficients are taken
equal to one, i.e. the mixture is considered ideal;

2) parameter values are found 2; as a result of
solving the system of equations (6) and (13);

i,k=1,m, Iiky
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3) the composition of product flows is calcu-
lated according to the formulas (13);

4) the activity coefficient values are specified
by formulas (2)—(4), using the compositions calculated
in the previous step;

5) the calculation is repeated, starting from
point 2, until there is a coincidence of the compositions
obtained in two successive iterations with a preset ac-
curacy.

Below you can find a comparison of the calcu-
lation results of the product flow composition of an or-
dinary gas fractioning unit (complex system) accord-
ing to the offered model (6), (13) with the data of an
industrial experiment. The installation consists of three

AN. BanyHoB

distillation columns and divides the initial hydrocarbon
mixture into four products: j = 1 — propane fraction
(e1=0.279, T1= 325 K, P1=1.67 MPa), 2 — isobutane
fraction (g2 = 0.113, T.= 327 K, P, = 0.80 MPa), 3 -
butane fraction (e3= 0.225, T3 = 344 K, P3= 8.3 MPa)
and 4 — pentane fraction (g4 = 0.383, T4 = 387 K,
P, = 0.65 MPa). The source mixture composition, the
experimental compositions of the separation products,
as well as other primary source data are given in table.
1. The volumes of the component molecules needed to
calculate the relative particle size ; are determined by
the method of molecular models [20].

Table 1
Initial and experimental data
Tabnuya 1. UcxoaHble M 3KCIIEPUMEHTAIbHbIE IaHHbIE
i|  Component di Qi1 Qi1 Qi1 Zi Xi1 Xi2 Xis Xia
1 CH4 0.201 | 288.4 | 280.9 | 227.3 | 0.0101 | 0.0362 - - -
2 CoH4 0.414 | 66.7 65.4 56.0 | 0.0094 | 0.0337 - - -
3 CsHe 0.560 | 21.1 20.8 18.6 | 0.2656 | 0.8710 | 0.1999 | 0.0000 | 0.0000
4 u-C4Hio 0.770 9.2 9.1 8.3 0.1117 | 0.0409 | 0.7999 | 0.0327 | 0.0067
5 H-C4H1o 0.707 7.0 7.0 6.4 0.2272 | 0.0180 | 0.0002 | 0.9313 | 0.0329
6 u-CsHyp 0.853 3.2 3.2 3.0 0.0947 | 0.0002 | 0.0000 | 0.0325 | 0.2280
7 H-CsHyp 0.853 2.6 2.6 2.5 0.1169 - - 0.0034 | 0.3032
8 CsHig 1.000 1.0 1.0 1.0 0.1644 - - 0.0001 | 0.4292
Table 2
The calculation results of a complex system
Taoauya 2. Pe3yabTaThl pacyera CJI0KHOM CUCTEMbI
Ideal mixture Athermal mixture
. M =56.707; A, =51.185, A3=7.685 M =61.697; A, =54.764, A3=9.076
| Xi1 Xi2 Xi3 Xi4 Xi1 Xi2 Xi3 Xi4
1 0.0362 0.0000 0.0000 0.0000 0.0362 0.0000 0.0000 0.0000
2 0.0337 0.0000 0.0000 0.0000 0.0337 0.0000 0.0000 0.0000
3 0.8710 0.1999 0.0000 0.0000 0.8710 0.1999 0.0000 0.0000
4 0.0397 0.7999 0.0420 0.0021 0.0418 0.7999 0.0403 0.0015
5 0.0193 0.0002 0.9313 0.0320 0.0172 0.0002 0.9313 0.0335
6 0.0001 0.0000 0.0203 0.2353 0.0000 0.0000 0.0225 0.2340
7 0.0000 0.0000 0.0064 0.3014 0.0000 0.0000 0.0059 0.3018
8 0.0000 0.0000 0.0000 0.4292 0.0000 0.0000 0.0000 0.4292
Table 2 shows the calculation results of this CONCLUSION

system including and excluding the accounting of sep-
arated mixture athermal properties. The effective coef-
ficients of the component relative volatilities of the in
both cases are assumed to be identical. The preset con-
centrations are specified in bold letters. The results
analysis show that accounting of the mixture athermal-
ity leads, first of all, to increased values of the La-
grange multipliers. ;, characterizing duration of the
process, and has no significant impact on the composi-
tion of the products. At the same time, the distributions
calculated considering the athermal properties of the
mixture and assuming that mixture is ideal are similar
to the data of an industrial experiment.
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The offered calculated composition of the
athermal mixture separation products in complex dis-
tillation systems is quite similar to the thermodynamic
method. The method is based on an extended version
of the maximum entropy principle, with the introduc-
tion of complex experience information entropy as the
likelihood criterion. The extended version allows to
carry out the multicomponent distillation calculation of
both ideal and non-ideal (athermal) mixtures on a uni-
form methodological basis.
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