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The objective of the study is to build a simple yet informative mathematical model that de-
scribes the heat conduction in a spherical multi-layer body with phase transformation in the lay-
ers. The numerical scheme based on the theory of Markov chains is proposed to solve this prob-
lem numerically. The radial sector of the body is divided into finite number of spherical perfectly
mixed cells of different volume, which form a chain of cells. The heat exchange between the cells
is described with the heat conduction matrix, the entries of which depend on the local thermo-
physical properties of material in the cells (heat conduction coefficient, density, specific heat ca-
pacity). These properties can vary from one cell to another and with time. The outer cell of the
chain can exchange with heat with outside environment, the temperature of which can vary with
time. The state of the process is observed in discrete moments of time separated by small but finite
transition duration. If the temperature of a cell reaches the value, the phase transformation be-
gins at which, the evolution of the cell thermal and phase state is described with the correspond-
ing Kinetic equation of the phase transformation. The process of melting and solidification is used
as the example to verify the qualitative predictability of the model. The graphs of temperature dis-
tribution evolution and diagrams of phase content distribution in a multi-layer spherical body are
presented. The obtained results on the evolution of the thermal and phase state of the ball have
no contradiction to the physical sense of the process. The proposed algorithm has very low com-
putational time (1-3 min for one regime). The other processes of the phase transformation can be
easily implemented in the model, for instance, drying, exothermic and endothermic chemical re-

actions, etc.

Key words: heat conduction, phase transformation, multi-layer spherical body, cell model, melting, so-
lidification, temperature distribution, phase content distribution

INTRODUCTION

The problem of non-linear heat conduction
arises in many technologies connected with thermal
treatment of metals, particulate solids, or construction
materials. Very often physicochemical processes in-
side the medium complicate such problems where
heat conduction occurs. In general, it is a problem of
heat conduction in a composite domain of complex
boundaries and temperature-dependent thermo-
physical properties of the media inside it. It is not re-
alistic to obtain an analytical solution to the problem.
All attempts to do that require far-going assumptions
that do not fit the case in question.

A new analytical method is presented in [1],
which provides close-formed solutions for both tran-
sient indoor and outdoor temperature changes in
buildings. Time-dependent boundary temperature is

presented as Fourier series. Applying the periodic
properties of the boundary condition, an approximate
analytical solution for heat transfer is obtained. How-
ever, the method is valid only for one-dimensional
heat transfer in a plane wall that does not allow taking
into account non-homogeneity of the wall in princi-
ple. The paper [2] proposes a new strategy for fine
time resolution on the calculation of the response fac-
tors through Laplace's method considering a compari-
son with the performance of the State Space method
when used to calculate conduction transfer functions.
It was emphasized in [3] that as a rule, the exterior
layers of building envelope usually experience sea-
sonal freezing/thawing in winter that can reduce the
thermal resistance about 7% and more, and it is inad-
equate to keep thermo-physical parameters constant in
modeling.
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It was emphasized in [4, 5] that any non-
homogeneity in a building envelop structure forms a
so-called thermal bridges. The paper [4] is concerned
with minimizing thermal bridging through typical
window systems in buildings of hot regions. The ap-
proach to modeling used is based on an integrated 3D
dynamic simulation. It is found that the thermal bridg-
ing through typical window systems is significant and
should be taken into account in buildings design. It is
obvious that a simple but effective mathematical tool
is required to estimate the heat loss caused by such
bridges. The method of the equivalent thermal wall
employed for modeling the transient response of high-
inertial thermal bridges was reported in [5]. It was
shown that if the thermal bridge was not considered,
an underestimation of 25% in the heat flux across the
bridge was predicted. However, the approach does not
take into account the possible variation of thermo-
physical properties of a wall material due to moisture
freezing/thawing and deals with two types of the
bridge topology only. The paper [6] shows a new
method for implementing bi-dimensional and three-
dimensional heat transfer in dynamic energy simula-
tion software. It allows modeling heat flows in a mul-
ti-dimensional structured wall due to discontinuities
in both materials and geometry. According to our
viewpoint, presentation of a thermal process in the
state space is a very interesting and fruitful approach.
However, the phase transformation of moisture inside
a wall material is not taken into account in this work.

An interesting method for semi-analytical so-
lution of different variants of heat conduction equa-
tion was proposed in [7-10]. The method is based on
an analytical solution of the heat conduction equation
with respect to a spatial co-ordinate that changes from
one time step to another. It allows taking into account
variation of time and temperature dependent proper-
ties of a heated medium during the process. However,
the method was used for a single layer medium only.
The papers [11-13] describe application of the method
of cellular automata to solve such problems. The pre-
sented examples of its application to solve several
particular problems show that this tool is effective.
However, it does not follow from the examples how
the method can be used for the problem in question.

According to the authors’ viewpoint, one of
the most effective tools to solve such problems is the
theory of Markov chain. The fundamentals of its ap-
plication in chemical engineering are described in
[14]. 1t was successfully applied to solve various
problems of heat and mass conduction: numerical
study of melting a rod by a periodically moving local
heat source [15], theoretical study of the thermal state
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of building envelop in the neighborhood of embedded
item [16], modeling the heat state of a cross section of
heat insulated pipeline [17], modeling the moisture
content distribution in a rotating porous cylinder [18],
modeling the heat conduction in a rink domain with
non-stationary boundary conditions [19], modeling
the phase transformation in a spherical droplet at
cooling [20].

Nevertheless, the demonstrated examples do
not cover all aspects of the problem in question, and
additional investigation is needed to solve the prob-
lem as it was formulated.

THEORY

Fig. 1 shows schematically the cell structure
of the model. The process is supposed spherically
symmetrical. Fig. 1a shows the spherical sector of the
body. It contains several layers of different thermo-
physical properties (3 layers are shown as an exam-
ple). The sector is divided into m perfectly mixed
cells of identical radial length Ar = R/m. The volumes
of the cells are different and can be calculated by the

following formula
V= [r‘} SeAr M)
R

where Sr is the area of the outside surface of the sec-
tor. It is taken equal to 1 in further modeling. The
power z allows adjusting this formula to different co-
ordinate systems: z = 2 for the spherical co-ordinates,
z = 1 for the cylindrical ones, and z = 0 for the plane
one-dimensional one.

Fig. 1. Computational scheme of the model: a — division of spher-
ical sector into the chain of cells, b — heat transfer from the j-th
cell during a single time transition
Puc. 1. PacuetHas cxema Mojesn: & — pa3aeieHHe CHepruueCcKOro
CeKTopa Ha IeTb AYeeK, b — MmepeHoC TEMmIoThI U3 j-0i UehKH B
TEUCHHUE OAHOTO BPEMEHHOTI'O IIEpEXoaa
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Fig. 1b shows a separate cell: its dimensions
and the amount of heat that transits to the neighboring
cells j+1 and j-1 during the single time transition At.
Using At, the current time of the process can be calcu-
lated as tx = (k-1)At where k is the number of the cur-
rent time transition (the discrete analogue of time).
The material properties and the process parameters
are arranged as the column vectors of the size mx1.
For example, A, p and ¢ are the vectors of the heat
conduction coefficients, densities and specific heat
capacities of the cells, Q and T are the vectors of the
heat and temperature in the cells, V and M are the
vectors of the cells volume and their mass. It allows
writing the computational formulas in compact nota-
tion. For instance, the correlation between heat and
temperature can be written in the following form:

Q=T.*p.*V.*c,
where the symbol «.*» means the element by element
multiplication of vectors.

The properties of the material and process pa-
rameters vary with time. During the single time tran-
sition At, the state k transits into the state k+1. The
first stage of the process modeling is to describe the
vector Q evolution due to pure heat conduction with-
out taking into account the external and internal heat
sources. This evolution can be describes by the recur-

rent formula
Qk+1 - Pka (2)

where PK is the matrix of heat conduction (the matrix
of transition probabilities in terms of the Markov
chains theory) that depends on the thermal state of the
chain in its state k. It is a tri-diagonal matrix, the rules
of its entries constructing are described in details in
[15-20]. The formulas are listed below:

2
A
pk = M [1 Ar]ﬂ j=1,..,m-1 (3

BT kK B 2
Cj+1pj+1 2rj+1 AI'

2
o Ar | At
prk = M4 —.j=1,..,m-1 4
J*Lj C:(p;(( 2rj Arz J ( )

PJ'ITJ' =1- ij+1,j ) lefl,j’j =1,.,m (5)

The multiplies in parentheses play the role of
Lamé coefficients for the generalized co-ordinate sys-
tem. As it was mentioned above, the power z allows
adjusting these formulas to different co-ordinate sys-
tems: z = 2 for the spherical co-ordinate (the case in
question), z = 1 for the cylindrical one, and z = 0 for
the plane one-dimensional one. Thus, Egs. (3,4) can
be used for any system of co-ordinate that makes the
model more universal.

After calculating the heat distribution over the
cells due to heat conduction, the temperature distribu-
tion can be calculated as follows:

Tk1=QK*./p./V /¢, (6)

where the symbol «./» means element by element di-
vision of vectors.

The next step of modeling is taking into ac-
count heat sources acting in the process during At.
The heat exchange of the body with environment
brings correction into the vector Q*1:

ka+1:: ka+1+(l(Tout _ ka)At, (7)
where «:=» is the operator of assignment, a is the heat
transfer coefficient. After that, it is necessary to renew
the temperature distribution using Eq.(6).

The further step connected with the phase
transformation is more complicated. For the sake of
determinacy, suppose that the phase transformation
occurs due to melting of a low-melt material in the
intermediate layer surrounded by the layers of high-
melting materials (see Fig. 1). It means that the low-
melt material occupies the body from the cell j =
mi+1 to the cell j = my. It is supposed that at the ini-
tial moment of time all the layers are in the solid state,
and the vector of solid mass in the cells can be calcu-
lated as Ms= V.*p. Respectively, the vector of liquid
mass M. is the zero column vector.

At every time state, the cells of the low-melt
layer between j = my+1 and m; are checked for their
thermal and phase state. If Tj** > T} (the process of
heating the body) and T{*! > Tme but M**! = Mg;
(melting in the cell is over), the temperature T;<*! re-
mains the same. Otherwise, melting begins or contin-
ues. The heat that is absorbed for melting during At is

AQy = (T{™ =T, )ei oV, (8)
that leads to appearing of the liquid mass

AMY]" = AQr, 9

The new state of the cell becomes
O = Qi -aQy (10)
M= Mij* + M (12)
Tjk+l:Tme (12)
M *1=Mgj, if M j*1>Ms; (13)

If T;**1 < T (the process of cooling the body),
the sign at the right hand part of Eq.(8) becomes
negative, and Egs. (8)-(13) describe the process of the
low-melt material solidification.

Thus, the model allows describing the process
in multi-layer ball with melting/solidification of the
layers.

RESULTS AND DISCUSSION

The numerical analysis of the model de-
scribed above was done for a tri-layer ball of the radius R
=0.1 m, divided into m = 20 cells of the radial length Ar
=0.005 m. The edge layers are supposed to be of the
high-melting type, the middle layer being low-melt
with the melting point Tme = 40 °C and the latent heat
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of melting gme = 1-10° J/kg. It is also supposed that
the density and specific heat capacity is identical for
all of the layers and are 1000 kg/m?® and 400 J/kg-°C
respectively. The heat conduction coefficient of the
edge layers is 0.8 W/m-°C; of the middle (low-melt)
layer 0,2 W/m-°C. The initial temperature of the en-
tire ball is T;' = 20 °C. The external heat source with
the temperature Toi = 80 °C and the heat transfer
coefficient o = 20 W/m? acts on the ball from outside.
The calculations were done for At =3 c.

The first example of modeling concerns the
case when the low-melt layer reaches the center of the
ball (in fact, it is a two-layer ball). This material oc-
cupies the cells j = 1,...,14, and the high-melting ma-
terial occupies the cells j = 15,...,20.

The evolution of the temperature distribution
over the ball radius is shown in Fig. 2. The first stage
of the process is heating the ball until the temperature
in the cell 14 reaches the melting point. After that,
melting begins, which propagates to the ball center
until the entire low-melt material becomes liquid. The
temperature remains constant and equal to the melting
point during this period. When the melting is over,
heating the ball continues until it becomes heated up
to the outside temperature.

200 ¢ min
00

Fig. 2. Evolution of the temperature distribution over the ball
radius in the two-layer ball
Puc. 2. I3mMeHeHne pacripeeNieHnst TEMIIEPaTyphl 10 pagnycy B
JIBYXCJIOMHOM II1ape

The evolution of the phase state of the ball is
shown in Fig. 3 as a solid/liquid diagram. It corre-
sponds to the graph shown in Fig. 2, and shows the
propagation of the front of melting.

The next example concerns with the heating
of a tri-layer ball with the low-melt layer in the mid-
dle. The layers are placed as follows: the high-melting
layers occupy the cells j = 1,...,5 and j = 15,...,20,
and the low-melt layer is placed in between. The ex-
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ternal heat source begins to act at the beginning of the
process and stops at t = 400 min. Fig. 4 illustrates the
evolution of the temperature distribution during the
process.

r,m

009
00s
007
0.06
005

004
oozl Front of

oozl melting

oo Solid
0 100 200 300 400 t, 11N
Fig. 3. The phase state diagram during heating the two-layer ball
Puc. 3. Jlnarpamma (a30BOr0 COCTOSHUS IIPH HATPEBE JIBYXCIION-
HOTO mapa

Solid

Liquid

~ 1000
r.m 0 00 t. min
Fig. 4. Evolution of the temperature distribution over the ball
radius in the tri-layer ball
Puc. 4. lI3amenenue pacnpeziesieHus: TeMIEpaTypsbl O pajinycy B
TPEXCIOHHOM LIape

The beginning of the process is similar to one
shown in Fig. 2 but the melting propagates not to the
ball center but to the external border of the internal
layer. After the external heat source stops acting,
cooling the ball begins. When the temperature of the
cell j = 6 reaches the solidification temperature
(which is equal to the melting point) the process of
solidification begins, which propagates to the external
border of the intermediate low-melt layer. After the
solidification of the entire layer is over, the cooling of
the ball continues up to the outside temperature.

The phase state diagram is shown in Fig. 5. It
also corresponds to the data presented in Fig. 4. The
propagation of the fronts of melting and cooling can
be clear seen in the diagram. The completely melted
layer exists between 300 and 440 min.
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r.m
0.0° Solid
0.08
0.07 F.r(.)nr of ]
006 solidification |
0.0s Liquid \
0.04
0.03} Front of
0021 melting .
001 Solid
0 200 200 GO0 800 t. min
Fig. 5. The phase state diagram during heating and cooling the tri-
layer ball

Puc. 5. lnarpamma (a30BOro COCTOSIHUSI IIPH HarpeBe M OXJIa-
XKJIEHUU TPEXCIOUHOrO Iapa

At last, Fig.6 shows the temperature var-
iation of some particular cells. The dashed line 1
shows variation of the temperature of the external
heat source. The lines 2 and 4 are related to the
last and the first cell respectively. The line 3 con-
cerns with the middle cell of the low-melt layer.
All of the lines have no contradictions to the
physical sense of the process.

CONCLUSIONS

The proposed mathematical model based
on the theory of Markov chains allows describing
the non-linear heat conduction in a multi-layer
ball with phase transformation in the layers. The
presented example of heating and cooling the tri-
layer ball with melting and solidification of the
intermediate layer approved predictability of the
model, which allowed calculating the thermal
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and phase state evolution during the process with
variable temperature of the external heat source.
The obtained results on the evolution of the
thermal and phase state of the ball have no con-
tradiction to the physical sense of the process.
The proposed algorithm has very low computa-
tional time (1-3 min for one regime). The other
processes of the phase transformation can be eas-
ily implemented in the model, for instance, dry-
ing, exothermic and endothermic chemical reac-
tions, etc.
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Fig. 6. Variation of the temperature of some cells: 1 — outside
temperature, 2 — j=20, 3 -j=10,4 - j=1
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