DOI: 10.6060/ivkkt.20216408.6434

CHUHTE3 [IOJIA (CTUPOJI-CO-1,3,5-TPUOKCAHA) 3KOJOTI'NYECKUM KATAJMU3ATOPOM
MOHTMOPUJIVIOHUT MATHUT-NA* KATAJIU3ATOP

H. Xamam, M. . ®eppaxu, M. beabdaxup, P. Meradap

Habwns Xamam

Kadenpa texHomornueckoro MHKUHUPHUHTA, (AKyIbTET HAYKH U TexHONOTuH, YHuBepcuter Mycradsr Cram-
Oynu, Mackapa, AJKup

Jlaboparopust xumun nonanmepos, Kadenpa xumun, akyabTeT TOYHBIX W HPUKIAJAHBIX HAYK, YHUBEPCHUTET
Opana Axmen ben bemna, BP 1524, Dns-M’Hayap, 31000, Opan, Amkup

E-mail: nabilpolymere@gmail.com

Moxammen U. @eppaxu, Moxammen benbaxup, Pammm Merabap

Jlaboparopust XUMUY TOTUMEPOB, XUMUYIECKHH (paKkyapTeT, DaKyIbTeT TOUYHBIX U MPUKIAJAHBIX HAYK, Y HUBEP-
cutetr Opana Axmen ben Bemna, BP 1524, On1p-M’Hayap, 31000, Opan, Aixup

B oannoit pabome obcyrcoaemcesn IKonozuueckuii n00xXoo K cunmesy conoaumepoes (1,3,5-
MPUOKCAH-CO-CIMUPOT), noJyueHHbIX cononumepusayuen 1,3,5-mpuoxcana (TOX) co cmuponom
(ST) ¢ npucymcmeuu Maznum-Na+ ¢ pacmeope. Maznum-Na+ npedcmaensem co6oii uHuyuamop
U3 MOHMMOPUTIOHUMOGOU 2UHbBL ¢ 00Menom Na+t. Imom meepovlii KAaMaAIU3aAmMop umeem MHoO20
npeumyuwiecme. Cpeou HuX: npoyecc nPOCm 8 UCHOIL306AHUN, IKOSIO2UYEH U 6 KOHEUHOM NPOOYyKme
Hem cnedoe unuyuamopa. Mol uzyuanu KUHEMUKy peaKyuu no 6IUAHUI0 KOAUYECMEa MAZHUMA -
Na +. ITonyuennsiii cononumep oxapakmepusoganu ¢ nomouisto *H AMP, JICK u HK-cnexmpo-
ckonuu u ananuia kamanuzamopa c nomouipto XRD. ITocne nposedenusa smux KuHemuueckux uc-
C1e006aAHUIL U AHATIU308 8 KOHUE MONCHO NPEOIONCUINb MEXAHUIM PEAKUUU CONOIUMEPUIAUUU.
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This study discusses an ecological approach to the synthesis of copolymers (1,3,5-trioxane-
co-styrene) obtained by copolymerization of 1,3,5-trioxane (TOX) with styrene (ST) in the presence
of Maghnite -Na + in solution. Maghnite -Na * is a montmorillonite clay initiator with Na+ ex-
change. This solid catalyst has many advantages. Among them, the process is easy to use, environ-
mentally friendly and there are no traces of initiator in the resulting product. We studied the kinet-
ics of the reaction by the influence of the amount of Maghnite -Na+. The resulting copolymer was
characterized by *H NMR, DSC and IR spectroscopy and analysis of the catalyst by XRD. After
these kinetic studies and analyzes have been carried out, a copolymerization reaction mechanism
can be proposed at the end.
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INTRODUCTION

Attempts are being made to improve the prop-
erties of polystyrene by adding other monomers such
as 1,3,5-trioxane, styrene-based polymers such as sty-
rene-acrylic polymers, which are used in the produc-
tion of coatings on textiles, and some other styrene-
based monomers, copolymers which have been studied
and developed [1]. Researchers around the world are
striving to minimize the cost of polystyrene production
through the use of inexpensive, recyclable and non-
toxic catalysts. One of these acid-activated catalysts is
montmorillonite, which is the subject of particular at-
tention in various chemical processes because of its en-
vironmental compatibility, low cost, selectivity, ther-
mal stability, and reusability [2]. Montmorillonite is
used as a catalyst [3-4] or as a catalytic carrier [5-6].
Indeed, acid-treated montmorillonite is one of the acid
catalysts widely studied in many organic transfor-
mations, such as isomerization [7], alkylation [5-6-7],
acylation [9], and polymerization [10].

The acid property of montmorillonite can be
easily altered by replacing of the crystalline structure
[10-11]. It has been reported that aluminium, iron and
tin ion-exchanged montmorillonites are strongly acidic
and efficient for several acid-catalyzed organic reac-
tions, such as aldol and Michael reactions [12-13]. Al-
most all of their clay catalysts have been either (a) acid-
treated clays such as K-10, or ion-exchanged clays
such as AI**, Mg?* or H* exchanged Wyoming or Texas
bentonites [14].

Many catalysts can catalyze the ring opening
polymerization reaction of epoxy resins and aromatics.
Here are some examples of these catalysts: boron tri-
fluoride [15], 12-tungstophosphoric acid [16], trifluo-
ride-boron ether complexes [17], sulfonic superacids
[9-18], Pd (II) and Ni (II) a-diimine [19], metal alkyls
[19] [20], heteropoly acid [21], metal complexes [22-23]
and 2-iodimidazolium salts [24].

Recently, an Algerian proton exchanged mont-
morillonite clay called Maghnite-Na*, a new nontoxic
cationic initiator, was used as a catalyst for cationic
polymerization of a number of vinylic and heterocyclic
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monomers [25-26], which is environmentally friendly,
strong and can be recovered by simple filtration [27].
In this work we are interested in the copolymerization
of 1,3-dioxolane with styrene catalyzed by a clay-
based catalyst. called Maghnite Na*.

Maghnite has already been used, for refining
sugars from oils and other chemicals, so this work was
also done with the aim of upgrading this catalyst.

For example, T. Higashimura [28], carried out
copolymerization reactions of cyclic ethers among
them, ethylene oxide and propylene oxide with styrene,
using (BFs.OEt;) at 30 °C as a catalyst.

In this work we have taken this reaction and
we are going to replace this toxic catalyst with a clay-
based catalyst called Maghnite-Na*. Techniques such
as Infra Red (IR), Differential Scanning Calorimetry
(DSC), Hydrogen and Proton Nuclear Magnetic Reso-
nance (*H NMR), were used to characterize the prod-
ucts of the reaction. The effects of the amounts of the
Maghnite-Na* on the synthesis of poly (ST-co-TOX)
are also discussed.

EXPERIMENTAL

Preparation of Maghnite-Na*
Maghnite-Na* was prepared according to the
process reported in our previous study [29]. The raw
maghnite was put in an Erlenmeyer flask with 500 mL
of 1 M NaCl solution. The mixture was stirred with a
magnetic stirrer until saturation in 24 h at room tem-
perature.

The maghnite-Na* was then washed with water
to be free of chloride ions, and it was dried at 105 °C.
Copolymerization and products characterization

In a 50 ml beaker, 1,3,5-Trioxane (TOX)
(0.3 mol) and Styrene (ST) (0.3 mol) induced by Ma-
ghnite-Na* (0.25 M) were a chosen amount of Ma-
ghnite-Na*" was added at room temperature 40 °C and
CHClI; as solvent (Fig. 1). The weight ratio was kept
constant in all flasks. After the required time was
reached, an aliquot of the reaction mixture was then re-
moved in such a manner as to exclude any clay min-
eral, and then dried by evaporation to remove solvent
and remaining monomer (Table 1).
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Fig. 1. Styrene (ST) polymerization reaction with 1,3,5-Trioxane (TOX)
Puc. 1. Peakuus nonumepusanuu ctupoia ¢ 1,3,5-rprokcanom

Table 1
Experimental conditions for the copolymerization of
(TOX) with (ST), in the presence of Maghnite-Na* and
CHCIs (0.25M)

Tabnuya 1. JxcnepuMeHTaIbHbIE YCJI0BHUS COMOJIMMe-
pusanmu 1,3,5-TpHoKcaHa co cTUPOJIOM B IPUCYTCTBHHU
Maghnite-Na* u CHCl3 (0,25 M)

ST (mol) TOX (mol) Reaction time (h)

0.3 mol 0.3 mol 12

Characterization

Measurements of *H NMR spectra were con-
ducted in CDClIs solution, under ambient tempera-
ture on an AM 300 FT Bruker spectrometer. IR ab-
sorption spectrum was recorded on Bruker FT-IR in-
strument alpha. X-ray diffraction (XRD) for Ma-
ghnite-Na*, obtained on D8 Advance Bruker AXS
X-ray diffractometer.

Mechanism of Polymerization

Natural montmorillonite has the potential for
efficient electrolytic modification of 2D layered nano-
materials [30], the Maghnite-Na* is ion-exchanged
montmorillonite sheet silicate clay. The montmorillo-
nite lattice is composed of layers made up of two silica
tetrahedral sheets with a central alumina octahedral
sheet [31-32]. The sodium ion Na* carried by Ma-
ghnite-Na* in the interlayer space induce cationic
polymerization, and the montmorillonite sheets play
the role of counter-anions (Fig. 2).
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Fig. 2. Schematic representation of Maghnite-Na*
Puc. 2. Cxematuunsiii Bua Maghnite-Na*
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RESULTS AND DISCUSSION

Characterization of the Catalyst (XRD)

The increase in basal spacing from d = 11.45 A
in “raw-Maghnite” (Fig. 3), characteristic of a single
water layer between the sheets, to ad = 16.06 A value
in Maghnite-Na+ (Fig. 3) for two interlamellar water
layers reflects the changes in interlayer cation and its
associated hydration state as a result of the treatment
[32-33].

The elementary analysis of Maghnite-Na+
shows that there is an excellent correlation between the
salt treatment and the catalytic activity of Maghnite-
Na* [34], We suppose that sodium exchange of "raw-
Maghnite" reduces the octahedral content (Al.O3)
which causes an increase in the proportion of silica
(Si0y) [35-36].

Effect of the amount of Maghnite-Na+ on the copoly-
merization

We can see from (Fig. 4) that the yield in-
creases as the proportion of Maghnite-Na* 0.25 M in-
creases (experiments 1, 2, 3). Indeed, using various
amounts: 2.5%, 5%, and 10% by weight, the copoly-
merization was carried out in bulk at 40 °C. The copol-
ymerization rate increased with the amount of Ma-
ghnite-Na+, in which the effect of catalyst as a cationic
catalyst of TOX and ST is clearly shown. This phe-
nomenon is probably the result of an increase in the
number of "initiating active sites" responsible for in-
ducing polymerization, a number that is pro rata to the
amount of catalyst used in reaction [37].

Characterization of products

'H NMR Analysis

'H NMR spectra of polymer was recorded in
CDCls using a Brucker AM 300 MHz apparatus at 25 °C
and gives the following information. On the *H NMR
spectrum of polymer in (Fig. 5), several peaks appear:

Interpretation of Infrared analysis

The product obtained from copolymerization
of TOX with ST was analyzed after purification by IR,
and gave the spectrum in Fig. 6, which shows the ex-
istence of:
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1. Phenyl in styrene occurs in three absorption
bands, one at the approximately 1493.37 cm™ for the
(C=C), another at 3027.39 cm™* and 3060.95 cm™ for
(C-H) and the last at 697.56 cm™ and 750.92 cm™* for
the in-plane strain of (C-H).

2. A strong absorption band around 1026.77 cm™
corresponds to the ether function (C-O-C).
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3. Medium intensity bands located between
2856.40 cm™ and 2925.16 cm™ correspond to the
asymmetric vibration (C-H) of the methylene group.

4. Double olefin bonds-CH=CH- appear at
1601.67cm™,

5. The alcohol -OH function characterized by
a weak band which appears at 3466.32 cm™.

Maghnite

Theta scal

Fig. 3. XRD diffraction of Maghnite-Na* and XRD diffraction of raw Maghnite
Puc. 3. Penrrenorpamma Maghnite-Na* u neobpa6orannoro Maghnite

Table 2
Mass yield values as a function of the percentage of Ma-
ghnite-Na*
Taobnuya 2. MaccoBblii BLIX0A KaK (yHKIUSI IPOLEHT-
Horo cogep:xanus Maghnite-Na*
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45 1 — Fig. 5. *H- NMR spectrum of poly (TOX-co-ST) in CDCl3
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30 - Hom B CDCls
25 - Table 3
20 - Results obtained by *H NMR
15 - Tabnuya 3. Pesynbrarel *H SIMP
10 - Index Nature of proton Monom |3 (ppm)
o | | | | | | A Ph-CH-CH- ST | 1.9
0 2 4 6 8 10 12 B Ph-CH- ST 1.3
Catalyst % Maghnite-Na* C -0-CH-0O- TRO 5.2
Fig. 4. Effect of Maghnite-Na* amount on the copolymerization D “CH=CH-Ph ST 5.3
of ST with TOX E, =CH-Ph ST 5.8
Puc. 4. Bnusuue konnuectsa Maghnite-Na* Ha cononumepu3a- F 2H (ortho to phenyl) ST 6.9
umio ctupona ¢ 1,3,5-tpuokcanom G,H H (in meta and in para of phenyl)] ST 7.1
I OH TRO 3.7
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DSC Analysis
The study of the degradation of polymers (Fig. 7)
can most often influence the factors that improve their

i
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thermal stability, and also make it possible to better de-
termine the area of their application. DSC analysis of
the polymer gives a glass transition temperature of
113.4 °C, which proves that we have one compound.

Tg=113,4°C

Heat Flow (Wi/g)

40 60 80 100

Temperature (*C)
Fig. 7. DSC thermogram of poly (TOX-co-ST)
Puc. 7. ICK kpuBas cononumepa ctupoia ¢ 1,3,5-tprokcanom
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Fig.8. Reaction mechanism of poly (TOX-co-ST)
Puc. 8. Mexanusm o0pa3oBaHus conoimMmepa cTupodia ¢ 1,3,5-Tpruokcanom

CONCLUSIONS

The present work shows that:

the Maghnite was modified using an ion ex-
change process to obtain Maghnite-Na* (sodium ex-
change process) that is a non-toxic catalyst. XRD
proved that this clay belonged to the montmorillonite
family, this copolymerization was found to be initiated
by Maghnite-Na* powder in heterogeneous phase. The
structure of the monomer and the polymer are con-

76

firmed by FT-IR, *H NMR. Maghnite-Na*, a proton ex-
changed montmorillonite clay, is an effective initiator
for the copolymerization of 1,3,5-Trioxane with Sty-
rene. Studies carried out on the effect of the amount of
catalyst on the synthesis of poly (TOX-co-ST) proved
the effectiveness of Maghnite and the copolymeriza-
tion rate increased with the amount of Maghnite-Na*.
The polymerization proceeds smoothly by a very sim-
ple procedure, and a simple filtration is sufficient to re-
cover the catalyst.
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