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Ilpeonoscena memoouxka cunmesa ynpaeienus KOHYeHmpayuei u memnepamypoii pea-
2EHMA 8 XUMUYECKOM pPeaKkmope npomouno2o muna. B kauecmee o6vexma ynpaenenus paccmam-
PUCAIOMCA 83AUMOCEAZAHHBIE XUMUYECKUE PEAKMOPbl, ONUCHIEAEMbLE CUCHEMOIL 0ObIKHOBEHHBIX
ougpgpepenyuanvupix ypasuenuil. B cucmeme ocyujecmensaemcsa yK3omepmuiecKas peakyus nep-
6020 nopaoka. Ilensy ynpaenenus cocmoum 6 cmadunuzayuu 3a0aHH020 Pedcuma yHKYUOHUpPo-
6AHUA NOCTIE006AMENBHO COCOUHEHHBIX XUMUYECKUX PEKIMOPO6, 8 HOGbIUEHUN UHIMEHCUGHOCINU
RPOMEKaHus XuMH4ecKux peakyuil u, KaK cieocmeue, yMeHvuieHul 6peMeHU nepexooHslX npo-
Ueccoes 3a cuem yeeiudeHus CHeneHu yCmouuueocmu neauneinoi cucmemot. Cmenens ycmoii-
YUGOCHU 63AUMOCEAZAHHOT CUCHIEMbL XUMUYECKUX PEAKMOPO6 ONPEOeiaenc 6eIUYUNOI cmap-
uiezo0 OMpPUUAmeNbHOZ0 XAPAKMEPUCIUYECK020 noKazamensn Jlanynoea. 3a0aua cmadunuzayuu,
6 KOHmeKcme OAHHOI Cmambu, HOHUMAEMCA KAK NOGblUieHUE CHMeNneHU YCMmOouuueocmu cu-
cHeMbl 83AUMOCBA3AHHBIX XUMUUECKUX PEAKMOPO8, NPU PEYIAPHBIX PEHCUMAX 8 GUOE 0CODbIX
mouek u nepuoouyeckux mpaexmopuii. Ilocmaenennana yenv 0ocmuzaemcs 66e0eHUeM 6 CU-
cmemy 00pamHuoil céA3u nO NEPEMEHHBIM COCOAHUA, KOMOPAsA N0360:1em chopmuposams mpe-
Oyemplit cnekmp xapaxkmepucmuueckux nokazameneii Jlanynoea. Ko ghguuuenmuor oopammuoi
C6:A3U ONPeOeAIONCA MEMOOOM MOOATLHO20 YNPABGIEHUA HA OCHOBE PeuieHs MAMPUYHO20 aTl-
2edpauueckozo ypaenenusa Cunveecmpa. C ucno1b308aHUeM MENO0008 MAMEMAMULECKO20 MOOe-
JIUPOGAHUA NPOBEOCHO UCCTC008AHUE NOBEOCHUSA CUCHEMbl, KOMOPAA COCHIOUM U3 MPEX XuMuye-
CKUX PeaKmopoe, COeOUHEeHHbIX nociedosamenvro. Hecneoosanue npoeoounocs 014 HeUHEUHOU
cucCmemMyl BpU OMCYMCMEUU YRPAGTAIOWUX 6030€licCmEull U npu ux Hanuyuu. /s onpeoenenus
nokKasamens yCmouuugOCmu CUCMEMbL 3AUMOOCHCMEYIOUUX XUMUUECKUX PEAKMOPO8 GblUlC-
Jenvl xapakmepucmuyeckue nokazamenu JIanynosa. Pe3ynomamol nposedeHHbx gbluuciumens-
HbIX IKCHEPUMEHM 08 NOOMBEPHCOAION PAGOMOCnOCOOHOCHIb RPEONOHCEHHO20 Memo0a ynpaeJe-
HUA U 00CmudICeHue NOCMAGIEHHON Yeau - Jopmuposanue mpedyemoi cmeneHu yCmouuueocmu
npoueccos 6 XuMuyecKux peaxkmopax.

KiroueBble ¢JjI0Ba: XMMUYECKUHA PEAKTOP, XapaKTEPUCTUUECKUE MOKa3arequ JlsmyHoBa, MoJIambHOE
ylpaBiieHUE, HEJMHEIHas cucTeMa
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A method for the synthesis of controlling the concentration and temperature of a reagent
in a flow-type chemical reactor is proposed. A system of interconnected chemical reactors is con-
sidered as a control object. A first-order exothermic reaction takes place in the system. The purpose
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of the control is to stabilize the given mode of operation of series-connected chemical reactors, to
increase the intensity of chemical reactions and, as a result, to reduce the time of transient pro-
cesses by increasing the degree of stability of the nonlinear system. The degree of stability of an
interconnected system of chemical reactors is determined by the value of the leading negative Lya-
punov characteristic exponent. Within the context of this article, the task of stabilization is under-
stood as an increase in the degree of stability of a system of interconnected chemical reactors under
regular regimes in the form of singular points and periodic trajectories. This goal is achieved by
introducing a state variables feedback into the system, which makes it possible to form the required
spectrum of Lyapunov characteristic exponents. The feedback coefficients are determined by the
modal control method based on the solution of the Sylvester matrix algebraic equation. Using the
methods of mathematical modeling, a study was made of the behavior of a system that consists of
three chemical reactors connected in series. The study was carried out for a nonlinear system in
the absence of control actions and in their presence. To determine the stability index of a system of
interacting chemical reactors, the Lyapunov characteristic exponents are calculated. The simula-
tion results confirm the operability of the proposed control method and the achievement of the set
goal — the formation of the required degree of process stability in chemical reactors.

Key words: chemical reactor, Lyapunov characteristic exponents, modal control, nonlinear system
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INTRODUCTION

A system of chemical reactors interacting in
terms of a reagent and a refrigerant is characterized by
significant nonlinearities in the main functional de-
pendencies and the presence of uncertainty in setting
the parameters of the reactors and the reactant [1]. In
this case, the behavior of a nonlinear chemical system
can have a complex dynamic character. The essence of
such modes is the presence of non-periodic changes in
the concentration and temperature of reagents, which
arise from parameter variations or the effect of noise
[2-5].

To control chemical systems under the action
of parametric and external disturbances, a fairly large
range of methods of the theory of automatic control is
currently used. These include: PID controllers [6-9];
regulators providing robust stability [10-13]; adaptive
controllers [14-17]. A synergistic approach based on
the analytical design of aggregated controllers has be-
come widespread [18-21].

In this paper, we consider the problem of in-
creasing the degree of stability of a nonlinear system
of interconnected flow-type chemical reactors based
on the formation of the required spectrum of Lyapunov
characteristic indicators by the modal control method
using the solution of the Sylvester matrix algebraic
equation generalized to nonlinear systems [22].

108

MATHEMATICAL MODEL OF A CHEMICAL
REACTOR. FORMULATION
OF THE STABILIZATION PROBLEM

A conceptual (meaningful) model of the func-
tioning of a chemical reactor of an ideal mixing of a
flow type with a jacket in which an exoteric reaction
takes place is taken as the initial one [11]. The model
of processes in a chemical reactor, built under the fol-
lowing assumptions, is taken as the initial one: all rea-
gents form a single-phase system; the incoming ele-
ments of the reacting mixture are instantly mixed with
the contents of the reactor and the state of the mixture
(concentration, temperature of the reagents) at each
moment of time will have the same values throughout
the entire volume of the reactor; heat removal from the
reactors is carried out through the jacket and all reac-
tors are non-isothermal (heat removal through the re-
actor wall is not instantaneous); the reactors are of flow
type. An exothermic reaction of the first order is car-
ried out in the system, the reaction rate increases with
increasing temperature and obeys the Arrhenius law.

The mathematical model of a chemical reactor
is described by a system of three nonlinear differential
equations and is of a fairly general nature applicable to
the study of the behavior of some arbitrary chemical

reactions that satisfy the assumptions listed above,
- F ~E. __
Ci :V.I(CH -C)-K exp[?'Ti lei

(1a)
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. F LS.
Ti=—({T_,-T)————(T T,
Vi ( i-1 |) piyiVi (TI C|)+
| KaH, exp(_E‘ Tilei, (1b)
PiYi R
. F LS.
Tei=—S(Tp—Tg)+—— =T.). 1
c v, (Tc(m) ai) ooveVe (M -Ta) (1c)

In the system of equations (1) the following
designations are used: F; — space velocity of the sub-

stance supply to the i -threactor; C,_,, C, —initial and
final concentration of the substance in the 7 -th reactor;
T, ,, T, —temperature at the inlet and outlet of the 7 -
th reactor; F,. — space velocity of the coolant supply

to the reactors; 7, is the temperature of the coolant in

the 7 -th reactor. Equation (1a) follows from the law of
conservation of mass and determines the rate of change
in the reagent concentration in the 7 -th reactor. Equa-
tion (1b) follows from the conservation of energy and
determines the rate of temperature change in the i -th
reactor. Equation (1c) determines the rate of change in
the temperature of the refrigerant in the i -th reactor.

Here V; is the working volume of the i -th re-
actor; K — multiplier in the Arrhenius law; E, is the
activation energy of the reaction in the 7 -th reactor; R —

universal gas constant; (D?i =dC; /dt — time derivative;
AH, — thermal effect of the reaction; p, — specific
mass heat capacity of the reagent; y, —reagent density;
L. —heat transfer coefficient; S, — heat exchange sur-
face area; p. — specific mass heat capacity of the re-

frigerant; y. —the density of the refrigerant.

If we introduce the vector of phase coordi-
nates:

2(t) =(z,(t) =C,, 2,(t) =T,, 7;(t) :Tqv z,(t)=C,,
z,(t) =T, 7(t) :Tczi z;(t) =C;, 25(t) =T, 75(t) :Tc3)T:

then the system of nonlinear differential equations de-
scribing three series-connected chemical reactors has
the form:

F

2(t)= V(Co -7,(1)-K EXP(_REl Zzl(t)j 7,(t)

L0 = T~ L) -2 (2,0 - 2,0) +

1 P1Y1Vy

KMo 22202,
PiY1 R
L0 = ¢ (00 - 20) - @O - 2,0)
c Pc¥eVe
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20 = (20-70)-K exp(‘—F'sz;(t)] 2,(t)

20 @0-20)- LSe (7 ) - z,() +
2 P2Y2Vs
+%exp(£22;(t)jz4(t),
P2Y, R
LZSZ

2,(t) = C—C(Zg (1) -z (1) + (z5(t) = z5(1)) (2)

PcYcVe

z,(t) = \; (z,() -z (1) -K EXP(_?ES Zsl(t)j z;(1)

=2 (2,0~ 2,(0)+

3¥3V3

2,(t) = \;(zs () - 2,(1) -

+KAH3exp(_—E3zg1(t)jzy(t),
P3Y3 R

R~ LsS, _
L0 =35 (e -0+ =GO - 1)

The scalar system of differential equations (2)

can be written in the vector-matrix form:

20)=F(), 2t)=2 ®)
where F(z(t)) =(f (z(t)))},: R®—>R® is a vector
function describing the dynamic properties of the in-
vestigated system of chemical reactors.

Statement of the problem of stabilization (in-
creasing the degree of stability) of an interconnected
system of reactors. Let the model of an interconnected
system of reactors be described by an autonomous vec-
tor differential equation (3).

One of the features of nonlinear systems is the
possibility of the emergence of regimes characterized
by instability of trajectories. The quantitative measure
of this instability is the characteristic exponents, origi-
nally introduced by Lyapunov. Formally, the charac-
teristic Lyapunov exponent is introduced as follows.
The characteristic indicator of a function z (t) is a num-
ber (or symbol +« ) defined as:

A(z)=lim (t‘1 In||z(t)||).

towo

The characteristic Lyapunov exponent of the
function z(t) is the result of comparing the rate of
change of the function z(t) at t—o with the exponent
exp{at}. Among the entire set of Lyapunov character-
istic exponents, the largest (senior) exponent A1 = Amax
is the most important. The set of characteristic expo-
nents, sorted in descending order A:>42>...>An, is called
the Lyapunov spectrum of a nonlinear dynamical system.

For the trajectories z(t, zo) of system (3), one of
three possibilities can be fulfilled:

— either the trajectory z(t,zo) = z° is a rest point
or a state of equilibrium, for it the signature of the Lya-
punov spectrum (signs of the characteristic exponents)
has the form:

(== === )

n
corresponding to a stable focus or node;

(42)

109



B.H. [Mamuxun, FO.A. Apanosa

— or the trajectory z(t,zo) is a periodic solution,
in which case there exists a number T > 0 such that
z(t+T, z,) =z(t, z,) , for which the signature of the
Lyapunov spectrum has the form:

(0! T T Ty T T )
n-1
corresponding to a stable limit cycle;

—or for any t =t, z(t,z,)=z(t,,z), in
which case the trajectory is not closed, and the signa-
ture of the Lyapunov spectrum can be of the form:

(+ ety — e )
S —

(4b)

(4c)

S

The task of controlling an interconnected sys-
tem of reactors is to stabilize a singular point or limit
cycle and increase the degree of stability, which is de-
termined by the value of the leading Lyapunov charac-
teristic exponent [22]. Control synthesis is reduced to
finding feedback on the state of a nonlinear system:

u(t)=u(z(t)) u(z(t)=-Kz(t).

In this case, the Lyapunov spectrum of a closed
nonlinear system must coincide with the spectrum of
the form (4a) or (4b).

Thus, the task of stabilizing a nonlinear system
of interconnected reactors consists in shifting the spec-
trum of Lyapunov characteristic exponents by intro-
ducing feedback on the phase coordinates of the system
and creating stable rest points or a limit cycle by form-
ing negative Lyapunov characteristic exponents in a
closed system.

CONTROL OF THE LAPUNOV CHARACTERISTIC
EXPONENTS OF ASYSTEM
OF INTERACTING REACTORS

Synthesis of control of a nonlinear system by
introducing feedback consists in changing the spec-
trum of Lyapunov characteristic exponents to achieve
the desired result — increasing the degree of stability of
the nonlinear system.

To solve the problem of changing the spectrum
of Lyapunov characteristic exponents, the fact that
they are determined by the eigenvalues of the Jacobian
matrix of the linearized system is used. A change in the
eigenvalues of the Jacobian matrix, the real parts of
which determine the characteristic exponents of the
linearized system, entails a change in the Lyapunov
characteristic exponents of the nonlinear system. The
desired eigenvalues can be assigned to the Jacobian
matrix using the modal control synthesis technique based
on solving the matrix algebraic Sylvester equation.

The validity of this approach is substantiated
by the theorem on the topological equivalence of a

110

nonlinear system and a linearized model [23, 24]. It
follows from the theorems that equilibrium states, pe-
riodic and non-closed trajectories of a linearized sys-
tem are mapped, respectively, into equilibrium states,
periodic and non-closed trajectories of a nonlinear sys-
tem. The theorem is valid for hyperbolic systems that
do not have purely imaginary eigenvalues.

Linearization of an interacting system of reac-
tors. If the following conditions are met:

F(z(t)) = (f,(z(t)));, is a vector function that
satisfies the conditions for the existence of a solution
to equation (3);

f.(z(t)) are real continuous functions, then
there is a partial derivative of the function with respect
F(z(t)) to the vector argument z(t):

1@ =0F @)/ @)l 3D ==y Tk =5O)/ 0| . (6)

and system (3) corresponds to the linear differential
equation:

y(t)=3(2")y(t) +By(t) )
Here, J(z") is the Jacobian matrix of the vec-
tor function F(z(t)).

Synthesis of feedback for a nonlinear system.
When solving the stabilization problem, the eigenval-
ues of the Jacobian matrix of system (7) with control
(5) must be negative:

V(j(z*)):a-Re(v(J(z*)))
where v(J(z*)) are the eigenvalues of the Jacobian ma-

trix of the original system; a is a coefficient that affects
the shift of the eigenvalues of the matrix along the real
axis of the complex plane. When the system stabilizes,
the coefficient o is chosen negative.

Based on the required eigenvalues of the Jaco-
bian matrix of the closed system (7), the feedback co-
efficients are calculated. The spectrum of Lyapunov
characteristic exponents of a closed system of the sys-
tem is checked for compliance with signature (4a).

Synthesis of control of a linearized system.
The problem of positioning the poles of the system is
considered, in which the determination of the control-
ler parameters is reduced to solving the matrix Syl-
vester equation [25].

For a linearized dynamic system (7), it is nec-
essary to find a stabilizing controller in the form (5)
such that the spectrum of the closed system:

y(t)=3(z")y(t) - BKy(t)
coincided with the prescribed spectrum, which is given
by the set p={w,,...., },
P (D) =p(-D).
Here, ®=diag (u,);, €R™" is a matrix with
numbers p. on its main diagonal.
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The task of finding the matrix K, which de-
termines the "depth" of the feedback on the state vec-
tor, is calculated by the formula:

K=GP™ (8)
where P isthe solution of the Sylvester matrix equation
J(Z)P+PD=BG 9)

For the dynamical system (7), the conditions
for the existence of a solution to the pole placement
problem are contained in the following theorem.

Theorem. Let system (7) satisfy the following
conditions:

1) matrix G e R™" of full rank < rankG =q,
q=min{m,n};

2) the matrix pair (J,B) is controllable
<rankD=n, where the controllability matrix is
D:(B‘JB‘...J”’lB)eR”Xm";

3) the matrix pair (G,®) is observable
<rankQ=n, where the observability matrix is
Q:(GT G ‘...‘(CDT)'HGT)E R™™ ;

4) the spectra of matrices J and @ do not in-
tersect p(J)Np(®)=;

5) the numbers p, (i=1,n) defining the pre-
scribed spectrum p={w,,...,u,} are pairwise different
L ﬂ“j =9,

then there is a control (5) such that the closed-loop ma-
trix has a spectrum that coincides with the spectrum of
the reference matrix (—®).

The controller parameters are determined from
relation (8), where the matrix P is the solution of the
Sylvester equation (9).

By substituting into the Sylvester equation (9)
the matrix G associated by equation (8) with the de-
sired matrix K , we obtain:

J(Z")P + P® =BKP
or after obvious transformations we have:

P*J(z")-BK)P=—.

The last equality means that the matrix
J=(3(z") - BK) issimilar to the matrix (- ®). Sim-
ilar matrices have the same eigenvalues (the same
spectra), so p(J)=p(—D) .

It follows from the theorem that to determine
the stabilizing controller that provides negative eigen-
values in system (7), it is necessary to solve the Syl-
vester matrix equation (9) and find the controller pa-
rameters using relation (8). Regulator (8), by virtue of
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the topological equivalence theorem [23] of a linear-
ized system (7) and a nonlinear system (3), is also sta-
bilizing for a nonlinear system of interacting chemical
reactors.

INVESTIGATION OF ASYSTEM
OF INTERCONNECTED REACTORS

We will illustrate the proposed method of con-
trol synthesis and analysis of the properties of a closed
system for a system consisting of three series-con-
nected chemical reactors.

Properties of the system without control. The
coordinates of the singular (stationary) point of system
(3) obtained as a result of solving the system of nonlin-
ear equations F(z(t), u(t)) =0 are equal to:

0, =(z,=5.98,2, =301.37,z, =301.37,2, =5.96,
z, =300.77,z, =300.77,z, = 5.95, z, = 300.19, z, = 300.18)

The Jacobian matrix of system (3) at a singular
point O, is equal to:

i@ u)=|o 0.03 0 316-10° -0.07 0.04

|0
o 0 0 0.03 0 -3.05-10° -0.07 0.04
[0 0 0 0 0 0 35.97 -35.99

cooooo
cocoooo

. (10)

-294:10° 0

The elements of the Jacobian matrix (10) are
obtained for the following values of the parameters

V., =0.08 cm®, K=2000s", E =42290 J/mol ,
p, =4190000 J / kgK , R=8.314 J / mol ,

AH, =-146538 J /mol , S, =0.09 m*
7,=0.001kg /m® L =167.472J/m’s,

e =4190 J /kgK | y. =0.001 kg / cm®,
F=0.0025"/c, F, =0.002 »° / ¢ and initial con-
ditions C,(0) =6 monws/ a* | T,(0) =302K ,
T,(0)=298K.

The spectrum of Lyapunov characteristic ex-
ponents of the system (3) is equal to
p(F)={4 =-0.0; 4, =—0.0%; 4, = —0.03; 4, = —0.13; &, = 0.20;
2y =—0.4; 2, =—30.80; 4, =—31.10; 4, = -31.23},
which indicates the weak stability of the system.
Properties of a system with control. Let the

matrix B of system (3) equal to:
10O 0 0 0]

(11)

o 0o oo o or
o oo oo r o
o o ook oo o
o ook oo oo
o kF oo oo oo
o oo oo oo

o o ok oo oo

O 0O 0O 0o oo o o
o rFr oo oo oo

1000 O0O ]
describes the effect of the control actions on the dy-
namics of processes in a system of series-connected
reactors.

0 1
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The controllability of the system (7) is deter-
mined by the controllability of the matrix pair. In ac-
cordance with the formula of condition 2 of the theo-
rem, the controllability matrix D eR>® is calcu-
lated. Its full rank is nine, which indicates the control-
lability of the chemical reactor system. The matrix J
is defined by expression (10), and the matrix B is de-
fined by expression (11).

To check the observability of the system, in ac-
cordance with the formula of condition 3 of the theo-
rem, the observability matrix Q e R™®9 is calculated.
Its full rank is nine, which indicates the observability
of the system. Here the matrices G and @ are equal

1 000000O0CO0CO 2 0 0 0O O 0 O 0 O
01 00000O0O0CO0 0 250 0 0 0 0 0 O
0010000O0O0CO0 0o 0 3 0 0 0 0 0 O
0001000O0O0C0O0 o 0 0 4 0 0 0 0 O
G=|0 0001 0000 ®=0 0 O 0 450 0 0 O
0000O0O1O0O00O0 0o 0 0 O O 5 0 0 O
0000O0O0O1O0O0 o 0 o0 o o 0 3 0 O
0000O0OO0OO0COI1IO0 6o 0 0 o O 0 0 32 0
10 000O0O0O0TCO0T1 6o 0o 0 o 0 o O o0 33

The fulfillment of the controllability and ob-
servability conditions make it possible to find a solu-
tion to the Sylvester matrix equation (9) and calculate
the feedback coefficient using the formula (8), which

a

stabilizes the system of chemical reactors at the oper-
ating point,

-2.03 -252:10°  6.14-10° 22410 -4.09-10" 245-10™ -7.39-10" 5.77.10%° -8.77-107°

-4.0810°  -2.57 0.04 -10510° 1.02-10° -7.28:10° 27310 -236-10" -7.54.107°
77110 36.44 -38.99 173107 211-10% 002
0.06 -1.13-107  2.74-10°  -4.03 -2.70-10°  2.39-10°
K=|-7.5810° 0.06 -1.36-10*  -355-10° -4.57 0.04 47510 -474.10° -9.95.10° |.
7.35.10°  0.02 -1.32.10%  -357-10% 36.42 -40.99 9.65-10° 9.25.10° 001
364-10°  -362.10° 566-10%° 0.24 -1.01-10°  3.1510°  -31.03 -2.85-10°  117-10°
-1.75-10° 216107  -152-10° -1.85-10° 0.22 -1.96-10%  -3.16-10° -32.08 0.04
-174.10°  216-10° -152-10° -1.71.10* 0.17 -1.9310%  -537-10° 36.50 -68.99

The spectrum of Lyapunov characteristic ex-
ponents of the system with synthesized control is equal to:
p(F(z,u)={4, =—-2.06; 1, =—2.56; A, = —4.30;
Ay =—4.46; 4, =-31.22, 4, =—-32.23; 1, =-T4.73,
Jy =—76.95; 1, =—104.97}
and the value of the senior Lyapunov characteristic ex-
ponent indicates an increase in the degree of stability.

Fig. 1 and 2 show time diagrams of transients
in the components of the phase vector of the first reac-

tor: the concentration of the substance z,(t)=C, and
the temperature of the refrigerant z,(t) =T inthe sys-

tem of chemical reactors without control and with con-
trol. The horizontal dotted line corresponds to the op-
erating point of the chemical reactor.

0.60-10% 841.10°  -224-10°
-1.41-10™ 145-10"  2.25-10™

b

Fig. 1. Transient processes in the system by components z, (t) = C, ; a) without control, b) with control

Puc. 1. Tlepexoansie mporueccsl B cucteMe 1o komnonentam z, (t) = C ; a) 6e3 ynpasnenus, b) ¢ ynpasnennem

e ——

a

b

Fig. 2. Transient processes in the system by components Z, (t) =Tc1 ; @) without control, b) with control

Puc. 2. Tlepexo/iHbIE TPONECCHI B CUCTEME TIO KOMIIOHEHTaM L3 (t) = TC1 ; a) 6e3 ynpasnenus, b) ¢ ynpasnennem
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From the above time diagrams, it follows that
the transition time in a controlled system is reduced
approximately tenfold, which is associated with a de-
crease in the senior Lyapunov characteristic index
and an increase in the degree of stability of the non-
linear system.

CONCLUSIONS

A technique for increasing the degree of stabil-
ity of a nonlinear system of series-connected chemical
reactors is proposed, based on the use of the modal
control method based on the solution of the linear Syl-
vester matrix equation. The application of the proposed
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