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IlIpeocmaenennasa cmamopa HOCeAUEHA U3YYEHUIO GMUAHUA KuciomHocmu yeoauma H-
ZSM-5 na npouecc kamanumuyeckoii mpancghopmayuu H-0ymanona 8 y2ieso0opoovt. B xoode uc-
C1e008aHUIL NPOBEOCH CUHME3 Yemblpex 00pa3uoe ueoaruma H-ZSM-5 cuopomepmansrsim memo-
00M ¢ UCnOIb308aHUEM 2ellell paziuiHo20 cocmaea. Cunmesuposantsle 00paA3ybl XapaKmepu3o-
8AUCH CXOOHBIMU 3HAYEHUAMU YOCTbHOU Nouaou nogepxnocmu nuxponop 300-318 m%/2 u me-
3onop 59-82 m%/2. Ilpu smom coomnowenue Si/Al ¢ obpasyax sapvuposanoce ¢ ouanazomne om 24
00 270, umo cnocoocmeoeano uzmenenuro kuciomunocmu om 0,1 0o 1,6 mmonv/2. llonyuennsie
Ueoumol ¢ pasiuyHbIMU KUCIOMHBIMU C6OLICMEAMU ObLIU UCCIE008AHbL 8 NPOYEcce npespauie-
Husa H-Oymanona 6 y2neeodopoost npu 400 °C u maccoeoii 06vemnol ckopocmu nooauu dyma-
Hona, pasnoit 0,3 ke(BuOH)/((ke(Kam)-u). Hayunaa noeusna cmamou 3axarouaencs é onpeoeJe-
HUU KOPPeNAYUU KUCTOMHBIX c80licme yeonuma H-ZSM-5 u ezo akmuenocmu ¢ npoyecce kama-
AumuyecKkou mpancgopmayuu dymanona. Bnepevie ycmanogsneno, umo nogvluienue KUCi0mHo-
cmu nogepxnocmu yeonuma H-ZSM-5 cnoco6cmeyem ysenuuenuto ckopocmu mpancgopmayuu
oymanona c 0,16 ke(BuOH)/((ke(Kam)-u) oo 0,27 k2(BuOH)/((ke(Kam)-u). Obpa3yst yeoruma c
Konuenmpayueii kKuciomuoix yermpos 0,1 mmons(NHz)/2 u 0,6 mmons(NH3)/2 xapakmepu-
306anuce omcymcmeuem oe3akmusayuu 6 meuenue 24 u, oo6pazysvl yeonuma ¢ KucjiomHo-
cmuio 1,2 mmonwv/z u 1,6 mmonv/z xapakmepu3zosanuce nadenuem akmuenocmu na 15% u 52%
ecinedcmeue ygeiuueHus cKopocmu o0paz0eanus NOIUAPOMAmMuULecKux yeiee00opooos. Iloeswi-
wienue kucnromuocmu yeoauma c 0,1 0o 1,6 mmons(NH3)/2 npueooum K yeenuuenuro KOHueHmpa-
YUU apoOMAmMUYECKUx y2ne6o00opooos ¢ 12 mac.% 00 55 mac.%. Ilpu smom maxoice nabnrooaemes
yeenuuenue KonyeHmpayuu ankanog c 14 mac.% 0o 32 mac. %, mozoa Kkak Konyenmpayua Henpe-
0eIbHBIX y21e6000p0008 crudicaemcs ¢ 74 mac.% oo 11 mac.%. Ha ochosanuu noayuennvix 0an-
HbIX Onpeodeiena Koppenauus HauaibHol AKMUGHOCIU YeoIUmd 8 peakyuu mpanchopmauuu H-
bymawnona 6 y21e6000po0svl OM Ko1u4ecmea akmueHbvIX YeHmMpoas.
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STUDY OF THE EFFECT OF H-ZSM-5 ZEOLITE ACIDITY ON THE PROCESS
OF CATALYTIC TRANSFORMATION OF N-BUTANOL INTO HYDROCARBONS

R.V. Brovko, ML.E. Lakina, M.G. Sulman, V.Yu. Doluda

Roman V. Brovko, Margarita E. Lakina, Mikhail G. Sulman, Valentin Yu. Doluda*

Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, Nab. A. Nikitina,
22, Tver, 170026, Russia
E-mail: RomanVictorovich69@mail.ru, marusalewl5@yandex.ru, science@science.tver.ru, doludav@yandex.ru*

The article is devoted to study of influence of the H-ZSM-5 zeolite acdity in the n-butanol
to hydrocarbons catalytic transformation process. Four H-ZSM-5 samples were synthesized by hy-
drothermal method using different gel compositions. Synthesized samples were characterized by
similar values of the micropores and mesopores specific surface areas 300-318 m?/g and 59-82 m?/g.
However, the Si/Al ratio in the samples varied in the range from 24 to 270, which contributed to a
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change in surface acidity from 0.1 to 1.6 mmol/g. Obtained samples with different acidic prop-
erties were tested in butanol to hydrocarbons transformation process provided at 400°C and
0.3 kg(BuOH)/((kg(Cat)-h) weight hourly space velocity. The novelty of the article is the determi-
nation of the correlation between the acidity of H-ZSM-5 and its activity in n-butanol catalytic
transformation. It was found that an increase in the acidity of H-ZSM-5 zeolite surface pro-
motes an increase in the rate of n-butanol transformation from 0.16 kg (BuOH)/((kg(Cat)-h)
to 0.27 kg(BuOH)/((kg(Cat)-h). Zeolite samples with acid site concentrations of 0.1 mmol/g and
0.6 mmol/g were characterized by the absence of deactivation within 24 h, zeolite samples with the
acidity of 1.2 mmol(NHs)/g and 1.6 mmol(NHzs)/g were characterized by a decrease in activity by
15% and 52% due to an increase in polyaromatic hydrocarbons formation rate. An increase in the
acidity of the zeolite from 0.1 to 1.6 mmol(NHs)/g leads to an increase in the aromatic hydrocarbons
concentration from 12 wt.% to 55 wt.%. An increase in alkanes concentration from 14 wt.% to 32 wt.%
was also observed, while the concentration of unsaturated hydrocarbons decreased from 74 wt.%
to 11 wt.%. Based on the obtained data, the correlation of the initial zeolite activity in n-butanol
transformation into hydrocarbons on the concentration of the active sites was determined.
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decrease needs rapid development of sustainable tech- HGaHs +Ho
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nologies for bio-renewable resources transformation
into fuel compounds [2, 3]. Biobutanol is produced
from lignocellulose biomass via the acetone-butanol-
ethanol fermentation [4] process using genus Clos-
tridia microorganisms [5]. Biobutanol can be directly
blended into diesel fuel, but it is not applicable for di-

Butanol conversion passes through dehydra-
tion reaction with n-butene formation, n-butene isom-
erization to i-butene, n-butene, and i-butene aromatiza-
tion with hydrogen release and n-butene, i-butene hy-
drogen transfer reaction with formation of alkanes. Ze-
olite acidity can be considered one of the critical fac-

rect blending to obtain gasoline [2]. Therefore, devel-
oping efficient routes for biobutanol transformation
into gasoline range hydrocarbons is needed [6, 7]. Cat-
alytic conversion of small chain alcohols — methanol
and ethanol into aliphatic and aromatic hydrocarbons
typically provided over different zeolites. The scien-
tific community has extensively studied zeotypes since
the seventies of the twentieth century [8-12]. However,
the catalytic transformation of biobutanol to hydrocar-
bons is much less studied, with significant gaps in the-
oretical and experimental justification of catalyst struc-
ture influence on process peculiarities [13-15].
According to kinetic data and reaction prod-
ucts distribution [16], the n-butanol to hydrocarbons
transformation process can be expressed by equation 1.

88

tors for alcohols to the hydrocarbons transformation
process [17, 18], but this issue was not studied well for
the n-butanol transformation process [19, 20]. Typi-
cally, zeolite or zeotype acidity increase results in the
appropriate increase of small chain alcohols chemical
transformation depth and decrease of catalyst stability
[21, 22]. Therefore, catalyst acidity strongly influences
the process selectivity to hydrocarbons. The present arti-
cle is devoted to the study of H-ZSM-5 zeolite acidity in-
fluence on the n-butanol catalytic transformation process.

MATERIALS AND METHODS

For H-ZSM-5 synthesis following reagents
were purchased from a local supplier and used as it is:
SiO; (chemical grade, 99.8 wt.%), NaOH (chemical
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grade, 99.7 wt.%), Al,O3 (chemical grade, 99.8 wt.%.),
tetrapropylammonium bromide (TPABTr, chemical grade,
98 wt.%) and NH4NO3 (chemical grade, 98.3 wt.%.). For
H-ZSM-5 samples initial gel solutions were charac-
terized by following molar ratios of oxides
8Na>0/100Si0,/3TPABI/xAl,0s/3000H.0 (x = 0.05,
0.1, 0.25, 0.5 moles). Then 100 ml of gel was placed in
a 300 ml autoclave with 175 ml of dead volume, and
the autoclave was purged five times with nitrogen
(chemical grade, 99.5 v.%) before reaction. Then it was
heated up to 170 °C for 72 h under a 150 rpm stirring
rate. Then synthesized samples were centrifuged and
washed two times with distillate water excess. Then
samples were shacked in 1M solution of NH4NO;3 to
obtain ammonium form of zeolite for three hours. Then
the suspension was centrifuged, and zeolite was dried
at 105 °C for 3 h, then calcination at 600 °C for one
hour. Synthesized samples were designated as ZSM5-0.05,
ZSM5-0.1, ZSM5-0.25, ZSM5-0.5 according to alumi-
num oxide concentration in reaction gel. Zeolite sam-
ples were characterized by nitrogen physisorption using
the t-plot method applicable for micropores analysis us-
ing Beckman coulter SA 3100 nitrogen analyzer. Deter-
mination of zeolite samples surface acidity was made
using AutoChem HP 2950 analyzer.

Samples were placed in cuvette and purged
with helium under heating to 600 °C, cooled to 100 °C,
purged with ammonia (10 wt.%) mixture in helium for
one hour, and then heated in helium up to 600 °C with
recording by heat transfer detector. Concentrations of
alumina and silica were analyzed gravimetrically ac-
cording to 1SO 2598-1:1992 standard method. Butanol
to hydrocarbons transformation reaction was provided
in a tube reactor filled with H-ZSM-5 catalyst. Butanol
was purged in the reactor by a pump through a heater
[8, 9]. Butanol weight hourly space velocity (WHSV)
was 0.3 kg(BuOH)/((kg(Cat)-h), reactor temperature
was 400 °C, overall pressure in the reactor was 0.11 MPa.
Catalyst regeneration was performed in a muffle fur-
nace in the air by heating a zeolite sample up to 600 °C
for three hours. Carbon depositions were determined
gravimetrically after the reaction. Before analysis, 0.5¢g
of used zeolite sample was washed with 75 ml of hex-
ane. Hydrocarbon concentrations were analyzed using
online gas chromatograph Kristall-2000M, and hydro-
carbons composition was determined using gas chro-
matomass-spectrometer GS-MS Shimadzu 2010 QP
according to ASTM D6730 - 21 standard method.

RESULTS AND DISCUSSIONS

Synthesized zeolite samples showed physico-
chemical characteristics typical for H-ZSM-5. The val-
ues of Si/Al, amount of chemosorbed ammonia, and
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the t-plot surface area for synthesized zeolite samples
are presented in Table 1. An increase in aluminum con-
centration during zeolite synthesis results in an appro-
priate decrease in Si/Al ratio, micropores surface area,
and increase in surface acidity. At the same time, mes-
opores surface area has no correlation to aluminum
concentration in the zeolite samples.

Table

Physicochemical properties of synthesized catalysts
Taonuya. PU3UKO-XMMHYECKHE CBOICTBA CHHTE3UPO-
BAHHBIX KATAJIU3aTOPOB

Si t-plot surface area,
Sample Al NH3; mmol/g _ m2/g
micro meso
ZSM5-0.05 | 270 0.1 315 62
ZSM5-0.1 | 86 0.6 318 59
ZSM5-0.25 | 42 1.2 310 65
ZSM5-0.5 24 1.6 300 82

Ammonia chemosorption Fig.1 showed the
presence of weak and strong Bronsted acid sites at 300-
315 °C and 540-570 °C. The ratio of weak and strong
Bronsted acid sites was 60/40 for all zeolite samples.
An increase of aluminum initial concentration in zeo-
lite samples results in an appropriate increase in the
acidity of weak and strong Bronsted acid sites.
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Fig. 1. Ammonia temperature-programmed desorption curves from
synthesized zeolites (1 — ZSM5-0.05, 2 — ZSM5-0.1, 3 - ZSM5-0.25,
4 — ZSM5-0.5)
Puc. 1. KpuBsle necopOunu aMmuaka ¢ moBepXHOCTH CHHTE3HPO-
BaHHBIX 11e0suToB (1 — ZSM5-0,05, 2 — ZSM5-0,1, 3 — ZSM5-0,25,
4 — ZSM5-0,5)
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Fig. 2. Kinetic curves of butanol transformation rate on process time
(1-2ZSM5-0.05, 2 — ZSM5-0.1, 3 — ZSM5-0.25, 4 — ZSM5-0.5)
Puc. 2. KpuBble 3aBUCHMOCTH CKOPOCTH TpaHchopManuy OyTaHosa
OT BpeMeHH npoBezeHus nporecca (1 — ZSM5-0,05, 2 — ZSM5-0,1,
3-2ZSM5-0,25, 4 — ZSM5-0,5)
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Synthesized zeolites activity study in butanol
to hydrocarbons transformation process showed that
decrease of Si/Al ratio from 270 to 42 results in an appro-
priate increase of butanol transformation rate from 0.16
kg(BuOH)/(kg(Cat)h) to 0.26 kg(BuOH)/(kg(Cat)h),
however further decrease of Si/Al ratio to 24 do not
influence butanol transformation rate.

Zeolite samples ZSM5-0.05, ZSM5-0.1 char-
acterized by Si/Al ratio 270 and 86 showed no deacti-
vation, while ZSM5-0.25, ZSM5-0.5 samples with
Si/Al ratio 42 and 24 showed strong deactivation after
20 h on stream and after 6 h on stream. Synthesized hy-
drocarbons consist of mainly three fractions — alkanes,
alkenes, and aromatic hydrocarbon. Alkane fraction of
butanol to hydrocarbons transformation process mainly
contain following hydrocarbons: methane, ethane, pro-
pane, butane, 1, 2-methylbutan, 2-methylpentane, 3-
methylpentane, n-hexane, 2-methylhexane, 3-me-thylhex-
ane, n-heptane, 2-methylheptane, 3-methylheptane. Al-
kene’s fraction is presented by the following hydrocar-
bons: 1-pentene, 2-methyl-1-butene, trans-2-hexene,
cis-2-hexene, 1-methylcyclopentene. Aromatic frac-
tion consists of following hydrocarbons: toluene,
ethylbenzene, p-xylene, m-xylene, o-xylene, 1-me-thyl-
3-ethylbenzene, 1-methyl-4-ethylbenzene, 1,3,5-tri-
methybenzene, tert-butylbenzene. Hydrocarbons frac-
tion composition drastically depends on synthesized
H-ZSM-5 samples structure and acidity (Fig. 3).

An increase of zeolite acidity from 0.1 to
1.6 mmol(NHzs)/g results in an increase of aromatic
fraction concentration from 12 wt.% to 55 wt.% and
alkanes fraction concentration from 14 wt.% to 32 wt.%,
while alkenes fraction concentration decreases from
74 wt.% to 11 wt.%. Hydrocarbons fraction change
can be attributed to an increase in aromatic hydrocar-
bons formation rate catalyzed by the increased quantity
of acidic sites [14]. An increase in alkanes concentra-
tion is a result of a hydrogen transfer reaction that takes
place during the aromatization process [20]. And al-
kenes concentration decreases as they are main rea-
gents for aromatization and hydrogen transfer reac-
tions. Taking into account the initial activity of synthe-
sized zeolites (Fig. 2) and quantity of acid sites (Table 1),
the correlation curve of initial H-ZSM-5 activity in bu-
tanol to hydrocarbons transformation rate on acid sites
quantity was made (Fig. 4).

Fig. 4 shows that increase in H-ZSM-5 surface
acidity up to 1.2 mmol(NHs)/g results in an appropriate
increase in butanol reaction rate, while the further in-
crease in zeolite acidity leads to reaction rate stabiliza-
tion. This behavior can be explained by diffusion limi-
tations taking place in the case of high acid sites con-
centration [14, 19]. However, to overcome diffusion
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limitations and to increase alcohols transformation
rate, additional mesopores can be formed in the zeo-
lite matrix.
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Fig. 3. Products distribution histogram for catalytic butanol Prod-
ucts distribution histogram for catalytic butanol transformation
process (1 — alkanes, 2 — alkenes, 3 — aromatic hydrocarbons)
Puc. 3. FI/ICTOFpaMMa pacnupeacicHust NpoayKTOB KaTaJIUTHYC-
ckoii Tpanchopmanuu Oyranona (1 — ankaHsl, 2 — aJKeHbL, 3 —
apOMAaTHYECKHE YTIICBOAOPOIBI)
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Fig. 4. Dependence of the initial rate of catalytic transformation of
butanol on the number of acid sites for synthesized zeolites H-ZSM-5
Puc. 4. 3aBucuMOCTh Ha4aNBHON CKOPOCTH KaTaTUTHYECKOH
TpaHchopmaluu OyTaHoIa OT KOJMYESCTBA KUCIOTHBIX IIEHTPOB
JUIS. CHHTE3HPOBaHHBIX 11€0auTOB H-ZSM-5

CONCLUSIONS

A series of H-ZSM-5 samples characterized by
different initial amounts of alumina precursor were
synthesized using the hydrothermal method. Zeolite
samples had Si/Al ratios from 24 to 270, which resulted
in zeolite surface acidity from 1.6 to 0.1 mmol(NHs)/g.
Micropores and mesopores surface areas were found to
be 300-318 m?/g and 59-82 m?/g, which is typical for
H-ZSM-5 zeolite. Ammonia chemosorption showed
the presence of weak and strong Bronsted acid sites
at 300-315 °C and 540-570 °C regions. Butanol
transformation process was provided at 400 °C and
0.3 kg(BuOH)/((kg(Cat)-h) weight hourly space ve-
locity. The reaction mixture contained water, gas, and
liquid hydrocarbons fraction. Analyzed hydrocarbons
consist of three fractions — alkanes, alkenes, and aromatics.
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An increase of zeolite acidity from 0.1 to 1.6 mmol(NHs)/g
results in an increase of aromatic fraction concentration
from 12 wt.% to 55 wt.% and alkanes fraction concen-
tration from 14 wt.% to 32 wt.%, while alkenes fraction
concentration decreases from 74 wt.% to 11 wt.%. An
increase in aromatic hydrocarbons fraction concentra-
tion can be attributed to an increase in aromatization
reactions rates due to an increase in acidic sites quan-
tity. An increase in alkanes concentration in the reac-
tion mixture is a result of a hydrogen transfer reaction
taking place during the aromatization process. Alkenes
concentration decreases as they are the main reagents
for aromatization and hydrogen transfer reactions. An in-
crease of H-ZSM-5 surface acidity up to 1.2 mmol(NHs)/g
results in an appropriate increase of butanol reaction
rate, while the further increase of zeolite acidity leads
to reaction rate stabilization. This behavior can be ex-
plained by diffusion limitations taking place in the case
of high acid sites concentration. An increase in H-
ZSM-5 surface acidity up to 0.6 mmol(NH3)/g does not
influence zeolite stability in butanol transformation re-
action. The further increase of surface acidity favor in-
crease of catalyst deactivation process, that can be sub-
scribed to formation polyaromatics hydrocarbons and
their strong adsorption over zeolite acid sites.
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