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Oceoenue yzi1€6000p0OHbBIX pecypcos KOHmMuUHeHmanbHo2o uwieabgha Poccuiickoii Dedepa-
yuu U 0codenno ezo apkmuyueckoi yacmu u /lanvnezo Bocmoka, aensemcea Kpynneiiwium ungpa-
CMPYKIYPHBIM BPOEKIOM, OCHOBAHHBIM HA YHUKATbHBIX PA36EOAHHbBIX 3anacax Hedmu u 2a3a. Kon-
muHnenmanvhblil wenvd Poccuu agnaemca KPynHviM HAUUOHATILHBIM 3ARACOM Y2/1€6000P0006, KO-
mopulil modcem obecneuums 00 25% poccuiickoii negpmu u 0o 30% poccuiickozo 2aza. Haubonee
CIL0JICHbIE 3ANAChl RPEOCHABAAIOM CODOTL CIIOIICHDIE YCI06UA PA3PADOMKU — 6bICOKOE Oa6IeHUE U HU3-
Kue memnepamypul, MOZym HAX00UMbCA 6 21YHOKOE0OHBIX unu apkmuueckux pecuonax. Coepemen-
Has 000v1ua Hehmu ocyuwiecmenaemcs, 3a4acmylo, 6 IKCMPEeMaabHbIX YCA06UAX: NPU BbICOKUX 0A6-
JICHUSX, 8 AZPEeCCUBHBIX MOPCKUX CPeOax u npu Hu3Kux memnepamypax. Komnnexcuulii memoo pas-
DPAdoOmKu MeCcmopodscOeHUll n0360asaem OJIUMETbHOE 8PeMs NOOOEPIHCUBAMb BbICOKUIL YPOBEHb 00-
ObIuU Y271€6000P0006, CHUIICAA 3AMPANBL 30 CUEM ORMUMUSAUUN UCHOTB3YEMBIX PECYPCOE U UCHOTb-
306anus oouieii ungpacmpykmypul. B nepcnekmuge nanuuue npou3eo0CmMeEeHHbBIX MOUWHOCHEN U
CePBUCHBIX 0a3 60ONU3U ADKMUYECKO20 Wieab(a NO3607IUM Peuiamsb MyabmuOUCYUnIUHAPHbIE 3a-
oauu, 3ampazuearoujue pa3nuiHple CeZMenmyl U HAnNPaeieHUs, MAKue KaK UHNCEHEPHO-MEeXHON02U-
yeckuii, PUPoOooXpannuslii u opyzue. B oannoii cmamoe paccmampusaromces gpaxkmopul, eausaiouiue
Ha cMouKoCcmb Hehmezazonposooos K Koppo3uu é Mopckoil cpede. Ilpuseden 0630p memoooe ynpou-
HeHUA U 1e2UPOSaAHUA KOPPOZUOHHOCMOUKUX CHIA808 01A IKCNILYamayuy 6 MOPCKOU U NOO600HOI
cpede npu pacwiupenuu Zpanuy, RPUMEHEeRUA MPaouyUoOHHbIX MEXHUUeCKUx cniaeos. Ilpoananuzu-
POGAHBI HANPAGTIEHUA OANbHETUUIE20 U3YUCHUA MEXAHUZMOE KOPPO3UU U PACNPOCIMPAHEHUA MPEULUH,
KOmopbule MOZym npueecmu K paspyuienuio mpyoonpoeooos. Hccnedosanue nanomacuimadbroi Kop-
Po3uu, nPOAHANU3UPOBARHOE 6 IMOI CHAMbE, MONCEm OKA3AMy 21yfoKoe 6IUAHUE HA XapaKmepu-
CIUKU 0ezpadayuu Mamepuaios, RPUMEHUMbBIX KO 6cCell Ompaciu.
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MATERIALS AND ANTICORROSION DEVELOPMENTS IN OFFSHORE
AND SUBSEA OIL AND GAS PRODUCTION

MLIL. Sizyakov

The development of hydrocarbon resources of the continental shelf of the Russian Feder-
ation and especially its Arctic part and the Far East is the largest infrastructure project based on
unique proven oil and gas reserves. The continental shelf of Russia is a large national hydrocarbon
reserve, which can provide up to 25% of Russian oil and up to 30% of Russian gas. The most
difficult reserves represent difficult development conditions - high pressure and low temperatures,
may be in deep water or arctic regions. As oil resources become more and more heterogeneous, an
expansion of various methods of extraction and processing is required, including in extreme con-
ditions, at high pressures in aggressive marine environments and low temperatures. An integrated
field development method allows maintaining a high level of hydrocarbon production for a long
time, reducing costs by optimizing the resources used and using a common infrastructure. In the
long term, the presence of production facilities and service bases near the Arctic shelf will allow
solving multidisciplinary tasks that affect various segments and areas, such as engineering and
technology, environmental protection, and others. The review article discusses the factors affecting
the resistance of oil and gas pipelines to corrosion in the marine environment, the issues of hard-
ening and alloying corrosion-resistant alloys for use in the marine and underwater environment
while expanding the boundaries of the use of traditional technical alloys, as well as further study
of the mechanisms of corrosion and crack propagation, which can lead to equipment failure and
destruction. The study of nanoscale corrosion analyzed in this article can have a profound impact

on the degradation characteristics of materials applicable to the entire industry.

Key words: offshore pipelines, corrosion, corrosion protection, corrosion-resistant alloys

INTRODUCTION

Due to the depletion of reserves of traditional
oil and gas fields over the past four decades, the indus-
try has moved to the development of more complex
fields [1-5] in condition of high pressure and low tem-
peratures in Arctic regions [6, 7].

Thus, the uninterrupted oil production has
been carried out on the Russian Arctic shelf for more
than 5 years. The continental shelf of Russia is a large
national hydrocarbon reserve, which can provide up to
25% of Russian oil and up to 30% of Russian gas [8].
According to the refined results of a quantitative as-
sessment of hydrocarbon (HC) resources, it has been
established that reserves of natural gas, condensate, oil
and dissolved gas in the amount of more than 122 bil-
lion tons of fuel equivalent are concentrated on the
shelves of the seas of Russia [9].

Such projects include, for example, Prirazlom-
naya and Sakhalin-1. Prirazlomnaya is the first and
only Russian project on the Arctic shelf, providing a
full production cycle (drilling, production, processing,
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storage, offloading to tankers). At the peak, it is
planned to produce 4.8 million tons of oil equivalent
per year in 2022 [9, 10]. Sakhalin-1 is another large
project in Russia for the development of hydrocarbon
reserves in subarctic conditions; the balanced revenues
to the budget of the Russian Federation amount more
than 1.2 trillion rubles [11].

In 2014-2020 various sectoral sanctions were
introduced, limiting foreign financing of leading state-
owned banks, oil and gas companies and Russian oil
and gas limited liability companies, access to advanced
production technologies [12].

The government introduced an import substi-
tution policy to localize the production of materials and
stimulate the development of innovative technologies
for the oil and gas sector in order to reduce dependence
on imported technologies, as well as to attract foreign
investment for the development of high-strength mate-
rials, including carbonaceous, as well as corrosion-re-
sistant alloys associated with the production of hydro-
carbons in arctic regions. Therefore, great interest has
arisen in the study of corrosion-resistant alloys.
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Fig. 1. Common forms of corrosion in transmission oil and gas
pipelines: A) internal corrosion, B) pitting [18]
Puc. 1. PactipocTpanenHble ()OpMBI KOPPO3UH HA TPAHCMHCCHOH-
HBIX HeTe- U razonpoBoaax: A) BHYTpeHH:S Kopposus, B) To-
yeyHas kopposus [18]

There are many review articles on this topic,
one of the latest, published in 2020, on the patterns of
internal corrosion and anti-corrosion protection of off-
shore facilities [13]. This review is devoted to environ-
mental cracking of high-strength alloys, methods of
hardening and alloying of corrosion-resistant alloys,
advanced methods of studying corrosion, such as stud-
ying micro- and nanocracks at grain boundaries.

Materials used in oil and gas production in the
Arctic regions are exposed to the most aggressive en-
vironments. Although the number of serious incidents
in the oil and gas industry is not alarming, corrosion of
materials can lead to costly catastrophic failures with
serious consequences for human life and the environ-
ment [14, 15].

This review article discusses the major materi-
als science challenges faced in the oil and gas industry
and demonstrates the importance of industry and re-
search synergies.

PREVALENT FORMS OF PIPELINE CORROSION

The Russian Federation as an energy power
has an important competitive advantage — a developed

and constantly expanding network for the delivery of
energy resources [16]. The integrity of pipelines trans-
porting and distributing oil, gas, petroleum products,
and other substances is seriously threatened due to
electrochemical deterioration (so-called corrosion)
[17, 18].

Pipeline corrosion is the deterioration of the
material of pipes and associated systems due to their
interaction with the service environment. Corrosion of
the pipeline and the resulting failures, as well as possi-
ble repairs and monitoring costs annually cost the
global economy billions of dollars [18]. Corrosion af-
fects all buried or submerged oil and gas pipelines, as
they are usually made of metal - mostly steel, with the
exception of components and assembly lines.

Corrosion of pipelines occurs due to an elec-
trochemical reaction in the presence of an electrolyte
in an aqueous medium; this is usually soil water or
fractions of the products that they transport (Fig. 1).
Electronic transfer is a very important component of
the corrosion process. Monitoring and mitigation sys-
tems rely on monitoring the voltages and currents as-
sociated with the corrosion process [19].

FACTORS AFFECTING THE RESISTANCE OF OIL
AND GAS PIPES TO CORROSION IN THE MARINE
ENVIRONMENT

Hydrogen sulfide stress corrosion cracking
(HSSCC)

Stress corrosion cracking is the growth of
cracking in an aggressive environment. It can lead to
unexpected, sudden fracture of normally ductile metal
alloys subjected to tensile stress, especially at elevated
temperatures [20, 21]. Stress corrosion cracking has a
high chemical specificity, as some alloys can only un-
dergo it when exposed to small amounts of chemical
environments. The chemical environment that causes
cracking for a given alloy is often the environment that
causes only minor metal corrosion [22, 23]. Conse-
quently, metal parts with severe stress corrosion crack-
ing can appear bright and shiny while filled with mi-
croscopic cracks. Stress corrosion cracking progresses
rapidly and is more common among alloys than pure
metals [24].

The experience of operating various oil and
gas equipment has shown that low- and medium-
strength steels with a yield point not exceeding 560 MPa
have a sufficiently satisfactory resistance to HSSCC.
Earlier, abroad in the oil refining industry, steels with
yield strength of 280-390 MPa were successfully used
for the manufacture of equipment. However, when us-
ing high-strength materials with a yield point of at least
740 MPa, the problem of corrosion destruction of
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equipment in the presence of hydrogen sulfide arose,
which was associated with an increase in the depth of
drilled wells.

With an increase in the strength of steel, its re-
sistance to hydrogen sulfide stress corrosion cracking
sharply decreases [25-27]. Fig. 2 shows the depend-
ence of the threshold stress, at which no cracking of
structural and pipe steels occurs, on the yield strength.
With increasing hardness, the tendency to HSSCC in-
creases (the time to fracture decreases). The resistance
of steels with the same hardness decreases with an in-
crease in the content of hydrogen sulfide in the medium
[28, 29].

As the strength of the steel increases, the prob-
ability of fracture along the grain boundaries increases.
With an increase in the yield point from 725 to 1210 MPa,
the nature of the destruction of steels in an atmosphere
of hydrogen sulfide at a partial pressure from 0.13 to
0.44 MPa changes from transcrystalline to intercrystal-
line [30].
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Fig. 2. Resistance to hydrogen sulfide stress corrosion cracking of
welded structural manganese (m) and improved pipe (©) steels for
oil pipelines, depending on the yield strength [27]. The curves
correspond to the boundaries of the scatter of values
Puc. 2. CtoiikocTh K CEpOBOIOPOIHOMY KOPPO3SHOHHOMY pac-
TPECKUBAHUIO IO HAIPAKEHUEM CBAPUBACMBIX KOHCTPYKIIHOH-
HBIX MapraHIIOBUCTHIX (W) ¥ YIy4IIEHHBIX TPYOHBIX (O) cranei
T HehTEMPOBOIOB B 3aBUCHMOCTH OT TIpeJieia TeKydectu [27].
KpuBble cOOTBETCTBYIOT I'paHUIIaM pa30poca 3HaUeHUH

1500

Thus, carbon and low-alloy steels with ¢0.2
not more than 650 MPa, which corresponds to HRc 22
hardness according to Rockwell, can undergo HSSCC
under especially severe conditions. In this case, to in-
crease the resistance to cracking, one should not go to
steels with a lower 0.2, but it is necessary to reduce
tensile stresses.
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Influence of the chemical composition of steel.
Low alloy steels

Steel is a multi-phase material consisting of
iron (ferrite) and iron carbide FesC (cementite). Ce-
mentite is more chemically stable than ferrite and does
not dissolve during carbon dioxide corrosion.

So, the standard nominal composition of typi-
cal carbon and low-alloy steels includes, according to
the requirements of ASTM A508, from 1.5-2.0 wt.%
Chromium (Cr), from 0.4-0.6 wt.% Molybdenum
(Mo), from 2.8-3.9 wt% nickel (Ni), carbon (C) content
— 0.23 wt%, silicon (Si) — 0.4 wt% [15]. The standard
minimum value of the yield strength for such steel is
450-690 MPa.

High strength materials with increased fatigue
life are required to overcome the design challenges as-
sociated with extreme well pressures and low temper-
atures in arctic regions. Hydrogen cracking resistance
decreases with increasing strength [31]. Thus, there is
an upper limit for the safe use of technical alloys in oil
and gas production environments, which is arguably
more conservative than in other industries [32].

There is no universal definition of what consti-
tutes a high strength material. In the context of this pa-
per, high strength refers to materials with specified
minimum tensile strength values above the typical
maximum currently recommended for forged carbon
and low alloy steels exposed to operating fluids, i.e.
550-586 MPa.

For martensitic and sediment-hardened mar-
tensitic foreign stainless-steel grades, such as UNS
S41000, UNS S17400, Cr content — 11.5-13 wt%,
Ni from 3.0-5.0 wt%, these grades may contain ni-
obium (Nb) — from 0.15 to 0.45 wt%, Carbon (C) —
0.15 wt% [15].

Russian scientists also present their experience
in the production of high-strength casing and tubing
from corrosion-resistant martensitic steels with a Cr
content of 13 wt% [33] with a wide range of strength
characteristics, including for achieving minimum yield
strengths of 552-758 MPa in pipes in conventional and
cold-resistant versions.

Bench and field tests of pipes and developed
threaded connections have confirmed the compliance
of products with the stated requirements. Based on the
test results, the products are used at the facilities of the
Gazprom Group.

Exploration and production of oil and gas is
moving to the Arctic regions [34]. Components oper-
ating in arctic conditions can be exposed to extremely
low temperatures, which requires materials and welds
that maintain high strength and fatigue characteristics
down to -60 °C [35, 36].
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Low alloy steels (LAS) are among the most ad-
vanced engineering materials. In terms of volume, the
use of LAS in various areas of the oil and gas industry
far exceeds the use of any other family of alloys [37].
Consequently, improving the properties and productiv-
ity of the LAS can have a significant impact on the de-
velopment of oil fields in difficult conditions.

In spite of their advantages, LASs nevertheless
undergo environmental corrosion, for example, in en-
vironments containing H»S, and due to hydrogen gen-
erated by cathodic protection systems [38, 39]. The in-
tensity of corrosion of underground metal structures
mainly depends on the composition of the soil, its elec-
trical resistivity, the presence of water, oxygen, etc. in
the soil [40, 41].

Nowadays, most low carbon steels are ac-
cepted for use in H2S environments if they contain
1 wt% Ni and the hardness of the surface exposed to
the hydraulic fluid is kept below 250HV. For example,
quenched and tempered mild steels with strength val-
ues below 550 MPa are believed to withstand exposure
to H2S at stresses up to 100% of their actual yield
strength at a total pressure of 1 atm [42].

Data collected by Kappes et al. [43] show that
hardened and tempered steels and bainitic steels are the
most resistant to sulfide stress cracking. Unhardened
steels containing fresh martensite are highly suscepti-
ble to hydrogen attack [44, 45].

Researchers have recently developed alloys
with yield strengths up to 860 MPa. These materials
resist sulfide cracking in mild to moderately acidic op-
erating conditions [46] due to advances in grain bound-
ary development [47-49]. The authors of these works
found that the high dissipation energy of special high-
angle grain boundaries, more than 30 °, reduces the
driving force for crack propagation.

3.3 Hardening and alloying of corrosion re-
sistant alloys for marine and subsea applications

Typically, large diameter subsea field compo-
nents such as valves, connectors and pipes are made of
carbon steel lined with corrosion resistant alloys. In
subsea oil and gas production, carbon steel is usually
deposited with nickel-containing alloys [50].

Both stainless steel and nickel alloys find nu-
merous applications in the oil and gas industry. In par-
ticular, nickel-based alloys are widely used in wellbore
components due to their combination of strength and
resistance to stress corrosion cracking [51-53]. The
most common nickel alloys, for example, UNS
NO07718 (NAT718), contain 17-21 wt% Cr, 2.8-3.3 wt%
Mo, 50-55 wt% Ni, Nb, Ta, and Ti [54]. Despite its
excellent performance in acidic industrial environ-
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ments, NA718 is susceptible to pitting and crevice cor-
rosion in oxidizing halogen environments due to the
intermediate Cr and Mo content.

There are also other nickel alloys that can with-
stand the most corrosive acidic environments and are
considered to be resistant to seawater [55]. Currently,
no standard defines the maximum allowable tempera-
ture for seawater service for such alloys; however, ac-
cording to ISO 21457 the limitation is 30 °C due to
crevice corrosion problems in chlorinated systems.

A priori, nickel alloys were considered im-
mune to hydrogen embrittlement under conditions of
increased strength [56, 57]. However, during the instal-
lation and operation of the equipment, sudden failures
and cracks of subsea structural steel components have
been reported under relatively favorable conditions as-
sociated with hydrogen embrittlement.

A variety of corrosion resistant alloys are used
in the oil field, including martensitic, austenitic, fer-
ritic, duplex and stainless steels, annealed and nickel
alloys, and titanium, cobalt and aluminum alloys. This
number of alloys is required to handle stress corrosion
cracking, sulfide cracking, and galvanic induced hy-
drogen cracking. Standards (ISO, GOST) limit
strength and hardness in some alloy systems. The ma-
terial boundaries established by the standard are de-
rived from a combination of industry experience and
qualification testing.

INFLUENCE OF HYDROGEN ON LOCALIZED
CORROSION RESISTANCE
OF CORROSION-RESISTANT ALLOYS. STUDY OF
HYDROGEN-DISLOCATION INTERACTIONS

Hydrogen is the smallest atom in the universe,
and the presence of H leads to severe deterioration in
strength and toughness. Recent simulations show that
the small size of the H atom in the crystal lattice leads
to the formation of asymmetric bonds between the H
atoms and the host metal [58].

Some authors [59-61] have shown that the hy-
drogen present in the passive film reduces the re-
sistance to pitting corrosion due to its strong reducing
properties.

Thus, a typical, but not trivial, approach is to
reduce the sample size and perform micro- and nanoscale
mechanical estimates of crack propagation [62, 63].

Undoubtedly, in recent decades, nanoindenta-
tion has been the most popular and frequently used
small-scale testing method [64].

A typical nanoindentation test consists of sev-
eral stages. The first one is to obtain an image of the
surface relief, then the tip can be positioned with na-
nometer accuracy. Subsequently, multiple punching of
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the material can be performed. In such cases, indenta-
tion begins with an elastic load that follows the Hertz-
ian contact model [65].

When the shear stress below the tip in the bulk
of the material approaches the theoretical stress re-
quired for the nucleation of a homogeneous disloca-
tion, a sudden jump occurs. Then indentation continues
in elastoplastic mode up to the maximum indentation
load. It can be assumed that the unloading curve is
completely elastic and is usually used to determine the
hardness and elastic modulus of a material by the Oli-
ver-Pharr method [66].

Nanoindentation provides excellent opportuni-
ties for studying the effect of hydrogen on mechanical
properties, especially the effect of hydrogen on dislo-
cation nucleation. The required load for the nucleation
of a homogeneous dislocation decreases in the pres-
ence of H; the dislocation nucleates more easily [67].

LOCALIZED CORROSION OF CARBON STEEL AT
THE MICRO LEVEL IN REAL TIME

Pitting corrosion in steel is initiated at or near
inclusions within the microstructure, such as MnS and
iron carbides [68]. However, it is not known why some
inclusions, even of the same composition, are more
electrochemically active than others [69]. There are
three theories explaining this mechanism: (1) orienta-
tion of the surface of the iron matrix, (2) galvanic me-
diation, [69] or (3) disordered and stressed iron matrix
[70, 71].

Inclusions of iron carbide, in particular ce-
mentite (FesC), are of particular interest in the study of
corrosion of carbon steel. Experimental observations
of nanoscale solid-liquid interfacial processes are lim-
ited by the complexity of reproducing the flowing cor-
rosive medium inside a device capable of characteriz-
ing rare, stochastic, and corrosion-initiating events oc-
curring at the nanoscale [72].

Some authors [73] studied steel corrosion pro-
cesses using TEM methods to obtain a temporary ob-
ject-specific nanoscale visualization of localized cor-
rosion processes occurring simultaneously on many
different solid-liquid interfaces present in a pipeline
sample from the real world.

The fully characterized sample was placed in a
liquid chamber for real-time observation under water
flow. The corroded sample was then characterized us-
ing TEM methods.

In one area near the center of the steel speci-
men, clear signs of localized accelerated corrosion
were found. The first signs of localized corrosion were
visible after 40 min of exposure to liquid electrolyte, as
indicated by the rapid changes in intensity in the TEM
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micrographs. Comparison of these brighter areas with
preliminary structural data showed that the initiation of
corrosion occurred in a triple junction formed by an
isolated inclusion of cementite grain and two adjacent fer-
rite grains. The final microstructure is shown in Fig. 3.

Fig. 3. Inspection of a steel sample where localized corrosion has
occurred. Overlay of the original grain boundaries on the TEM
image. The contours of the initial (gray) and final (black) place of
cementite inclusion are presented [73]

Puc. 3. O6cnenoBanue ctansHOr0 00pasia, rae NPoru30IuIa JIo-
KaspHasi Kopposus. HanmokeHre nCXOAHBIX TPaHUIL 3€PEH Ha
n3o0paxxennu [1OM. [IpeacraBneHbl KOHTYpPBI HAYAIBHOTO (Ce-
POT0) ¥ KOHEYHOTO (YEPHOT0) MeCTa BKIIFOUCHHS IIeMeHTUTa [72]

The imposition of the initial contour of the
grain boundary on the final image (Fig. 3) showed that
the cementite grain shifted relative to its initial position.

The final photos showed that the ferrite was
completely converted to an amorphous corrosion prod-
uct after 1025 min of exposure. At this point, the ferrite
regions of the sample lost about 30 nm, retaining 55 nm
as iron oxide. Taking into account the initial thickness
of 85 nm and the quantitative scale of the ferrite disso-
lution time, the rate of loss of corrosive material, due
only to uniform corrosion, was calculated in the range
from 0.015 to 0.16 mm per year at a penetration depth
of 0.044 to 0.44 mm per year. It is expected that these
values will be the upper limit, since they were calcu-
lated based on the possible contact of both surfaces of
the sample with the solution.

Further understanding of the mechanisms of
deposition of corrosion products can be achieved
through the introduction of new tools and methods that
complement TEM in situ and allow tracking the evolu-
tion of iron oxide in situ [74].
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Nanoscale corrosion pathways like those iden-
tified in this article can have a profound impact on the
degradation characteristics of materials. This work
suggests that different types of electrochemically ac-
tive processes will create percolation networks that
corrode the inner body of steel much more quickly than
predicted by uniform corrosion models.

CONCLUSION

High-strength materials, including carbon and
low-alloy steels, as well as corrosion-resistant alloys,
are necessary to overcome the material obstacles asso-
ciated with the production of hydrocarbons from un-
conventional formations under high pressure and cor-
rosive environments.
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Environmental cracking and localized corro-
sion are two major forms of degradation that affect al-
loys and prevent them from operating safely and eco-
nomically in high pressure, harsh marine environments
and arctic fields. A better understanding of metallurgi-
cal factors and manufacturing variables that lead to op-
timal reduction in stress corrosion cracking is of para-
mount importance.
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