ВЛИЯНИЕ ПОВЕРХНОСТНОЙ ОБРАБОТКИ НА ЭЛЕКТРОХИМИЧЕСКУЮ АКТИВНОСТЬ КОМПОЗИЦИОННОГО МАТЕРИАЛА ТізSiC2/TiC/TiSi В РЕАКЦИИ ВЫДЕЛЕНИЯ ВОДОРОДА

В.В. Пантелеева, А.Е. Пономарева, О.А. Фирсова, А.Б. Шеин, М.Н. Каченюк

Виктория Вячеславовна Пантелеева (ORCID 0000-0002-1506-6665) *, Анна Евгеньевна Пономарева (ORCID 0000-0001-5768-435X), Ольга Александровна Фирсова (ORCID 0000-0003-0220-9302), Анатолий Борисович Шеин (ORCID 0000-0002-2102-0436)

Кафедра физической химии, Пермский государственный национальный исследовательский университет, ул. Букирева, 15, Пермь, Российская Федерация, 614990

E-mail: vikpant@mail.ru *, ashein@psu.ru

Максим Николаевич Каченюк (ORCID 0000-0001-7476-9734)

Кафедра механики композиционных материалов и конструкций, Пермский национальный исследовательский политехнический университет, ул. Профессора Поздеева, 6, Пермь, Российская Федерация, 614013 E-mail: kachenyukmn@pstu.ru

Изучено влияние обработки поверхностного слоя композиционного материала ТізSiC2/ТіС/ТіSi на его электрохимическую активность в реакиии выделения водорода в 0,5М H₂SO₄. Обработка поверхности проведена путем химического травления в растворах 15, 30, 45% HF в течение 15, 30, 45 мин при 25 и 60 °C. Установлено, что катодные поляризационные кривые Ti₃SiC₂/TiC/TiSi-электрода без обработки и с обработкой поверхности имеют тафелевский участок с наклоном 0.060-0.076 В и характеризуются величиной перенапряжения 0,20-0,26 В при i = 1 мА/см². Скорость катодной реакции в результате обработки повышается в ~1,6-9,8 раза; наибольшее увеличение вызывает высокотемпературное травление в растворе 30% HF в течение 30 мин при перемешивании раствора. Спектры импеданса Ti₃SiC₂/TiC/TiSi-электрода при потенциалах тафелевской области состоят из емкостной полуокружности со смещенным центром; на графиках импеданса обработанного электрода в области наиболее высоких частот зарегистрирован прямолинейный участок с наклоном выше 45°, свидетельствующий о присутствии пор в поверхностном слое электрода. Для описания реакции выделения водорода на Ті₃SiC₂/TiC/TiSi использована эквивалентная электрическая схема, фарадеевский импеданс которой состоит из последовательно соединенных сопротивления переноса заряда R1 и параллельной R2C2-цепочки, отвечающей за адсорбцию атомарного водорода на поверхности электрода; эквивалентная схема также включает сопротивление электролита R_s и импеданс двойнослойной емкости, который моделируется элементом постоянной фазы СРЕ1. Показано, что результаты поляризационных и импедансных измерений удовлетворительно согласуются с механизмом разряд – электрохимическая десорбция с квазиравновесной стадией разряда при выполнении логарифмической изотермы адсорбции Темкина для адсорбированного атомарного водорода. Сделан вывод, что композиционный материал Ti₃SiC₂/TiC/TiSi в сернокислом электролите представляет перспективный электродный материал для электрохимического получения водорода.

Ключевые слова: карбосилицид титана Ti₃SiC₂, карбид титана TiC, силицид титана TiSi, реакция выделения водорода, электрокатализ

Для цитирования:

Пантелеева В.В., Пономарева А.Е., Фирсова О.А., Шеин А.Б., Каченюк М.Н. Влияние поверхностной обработки на электрохимическую активность композиционного материала Ti₃SiC₂/TiC/TiSi в реакции выделения водорода. *Изе. вузов. Химия и хим. технология.* 2024. Т. 67. Вып. 2. С. 37–45. DOI: 10.6060/ivkkt.20246702.6878.

For citation:

Panteleeva V.V., Ponomareva A.E., Firsova O.A., Shein A.B., Kachenyuk M.N. Effect of surface treatment on the electrochemical activity of Ti₃SiC₂/TiC/TiSi composite material in the hydrogen evolution reaction. *ChemChemTech* [*Izv. Vyssh. Uchebn. Zaved. Khim. Tekhnol.*]. 2024. V. 67. N 2. P. 37–45. DOI: 10.6060/ivkkt.20246702.6878.

EFFECT OF SURFACE TREATMENT ON THE ELECTROCHEMICAL ACTIVITY OF $Ti_3SiC_2/TiC/TiSi$ COMPOSITE MATERIAL IN THE HYDROGEN EVOLUTION REACTION

V.V. Panteleeva, A.E. Ponomareva, O.A. Firsova, A.B. Shein, M.N. Kachenyuk

Viktoria V. Panteleeva (ORCID 0000-0002-1506-6665) *, Anna E. Ponomareva (ORCID 0000-0001-5768-435X), Olga A. Firsova (ORCID 0000-0003-0220-9302), Anatoliy B. Shein (ORCID 0000-0002-2102-0436) Department of Physical Chemistry, Perm State University, Bukirev st., 15, Perm, 614990, Russia

E-mail: vikpant@mail.ru *, ashein@psu.ru

Maksim N. Kachenyuk (ORCID 0000-0001-7476-9734)

Department of Mechanics of Composite Materials and Construction, Perm National Research Polytechnic University, Professor Pozdeyev st., 6, Perm, 614013, Russia

E-mail: kachenyukmn@pstu.ru

The effect of treatment of the surface layer of the Ti₃SiC₂/TiC/TiSi composite material on its electrochemical activity in the of hydrogen evolution reaction in 0.5M H₂SO₄ has been studied. Surface treatment has been carried out by chemical etching in solutions of 15, 30, 45% HF for 15, 30, 45 min at 25 and 60 °C. It has been established that the cathodic polarization curves of the Ti₃SiC₂/TiC/TiSi-electrode without and with surface treatment have a Tafel section with a slope of 0.060–0.076 V and they are characterized by an overvoltage value of 0.20–0.26 V at $i = 1 \text{ mA/cm}^2$. The rate of the cathodic reaction as a result of treatment increases by ~1.6-9.8 times. The greatest increase is caused by high-temperature etching in a solution of 30% HF for 30 min while stirring the solution. The impedance spectra of the Ti₃SiC₂/TiC/TiSi-electrode at Tafel region potentials consist of a capacitive semicircle with a displaced center. On the impedance graphs of the treated electrode, a straight section with a slope above 45° was registered in the region of the highest frequencies, indicating the presence of pores in the surface layer of the electrode. To describe the hydrogen evolution reaction on Ti₃SiC₂/TiC/TiSi, we used an equivalent electrical circuit, the Faraday impedance of which consists of charge transfer resistances \mathbf{R}_1 connected in series and a parallel R_2C_2 -chain corresponding to the adsorption of atomic hydrogen on the electrode surface. The equivalent circuit also includes the electrolyte resistance R_s and the double layer capacitance impedance, which is modeled by the constant phase element CPE_1 . It has been shown that the results of polarization and impedance measurements agree satisfactorily with the discharge-electrochemical desorption mechanism with a quasi-equilibrium discharge stage when the logarithmic Temkin adsorption isotherm for adsorbed atomic hydrogen is fulfilled. It has been concluded that the composite material Ti₃SiC₂/TiC/TiSi in sulfuric acid electrolyte is a promising electrode material for the electrochemical production of hydrogen.

Key words: titanium carbosilicide Ti₃SiC₂, titanium carbide TiC, titanium silicide TiSi, hydrogen evolution reaction, electrocatalysis

ВВЕДЕНИЕ

Вопросы развития водородных технологий и перехода к водородной энергетике входят в энергетические стратегии многих стран мира [1]. Среди основных преимуществ использования водорода в качестве энергоносителя отмечаются неограниченность ресурсов, высокая энергонасыщенность, технологическая гибкость и экологическая чистота процессов преобразования энергии с его участием [2, 3].

В настоящее время освоены различные технологии производства водорода, особенности ко-

торых определяются природой используемого исходного сырья и способом получения энергии (электролиз воды, паровая конверсия метана, химическое разложение сероводорода и др. [2-4]). Наиболее перспективной технологией получения водорода является электролитический способ, поскольку характеризуется экологичностью (при условии, что производство первичной энергии не сопряжено с загрязнением окружающей среды), возможностью создания установок с широким диапазоном производительности, высокой чистотой производимого водорода и получением ценного и экологически чистого побочного продукта – газообразного кислорода [2, 4]. В то же время электролиз имеет низкую производительность и требует значительных затрат на электроэнергию. В связи с этим одним из приоритетных направлений развития работ в области водородной энергетики является поиск и разработка эффективных и недорогих электрокатализаторов для реакции выделения водорода (р.в.в.).

В качестве катализаторов водородной реакции исследовались металлы, сплавы, интерметаллические и металлоподобные соединения, композиционные материалы [5-7]. Значительный интерес для целей водородной энергетики в последнее время вызывают МАХ-фазы, представляющие собой семейство трехмерных тернарных соединений с формальной стехиометрией $M_{n+1}AX_n$ (n = 1, 2, 3, ...), где М – переходный *d*-металл, А – *p*-элемент (например, Si, Ge, Al и др.), X – углерод или азот [8]. Представителями данного класса соединений являются Cr₂AlC, Ti₂AlN, Ti₃SiC₂, Ti₄AlN₃ и др. Материалы на основе МАХ-фаз обладают электрокаталитической активностью по отношению к р.в.в. [9, 10], высокой электро- и теплопроводностью, механической обрабатываемостью, прочностью [8], стойкостью к действию агрессивных химических сред [11, 12] и, таким образом, удовлетворяют основным требованиям, предъявляемым к катализаторам [13, 14]. Вместе с тем значительное число работ посвящено исследованию и разработке различных видов модификации поверхности интерметаллических и металлоподобных соединений [15-17], МАХ-фаз [18-20] и композиционных материалов [21, 22] с целью повышения их каталитической активности в р.в.в. Среди предпочтительных видов обработки отмечаются химическое травление в растворах HF, KOH, электрохимическое травление, травление в безводных средах, расплавах и др.

Предметом настоящей работы является исследование влияния обработки поверхностного слоя композиционного материала $Ti_3SiC_2/TiC/TiSi$ растворами HF различной концентрации на его активность в р.в.в., изучение кинетики и механизма р.в.в. на $Ti_3SiC_2/TiC/TiSi$.

МАТЕРИАЛЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Композиционные материалы Ti₃SiC₂/TiC/ /TiSi получены методом искрового плазменного спекания механоактивированной смеси порошков титана ТПП-7 фракции менее 375 мкм, технического карбида кремния фракции менее 10 мкм и углерода C-1, взятых в мольном соотношении 3Ti/1,25SiC/0,75C. Механоактивацию шихты проводили в планетарной мельнице «САНД» при частоте вращения барабана мельницы от 280 мин⁻¹ при невысоком вакууме (P < 10 Па) на протяжении 3 ч. Искровое плазменное спекание порошковых композиций осуществляли на установке Dr. Sinter SPS-1050b в графитовой пресс-форме при температуре 1400 °С и давлении 30 МПа в течение 25 мин. Фазовый состав полученного композиционного материала соответствует ~66,3% карбосилицида титана, ~21,6% карбида титана, ~12,1% – силицида титана. Методика синтеза и материалы исследования описаны в работе [23].

Электрохимические измерения проводили при температуре 25 °C в условиях естественной аэрации в неперемешиваемом растворе 0,5М H₂SO₄ с помощью потенциостата-гальваностата с встроенным частотным анализатором Solartron 1280C в электрохимической ячейке ЯСЭ-2 с разделенными пористой стеклянной диафрагмой катодным и анодным отделениями. В качестве электрода сравнения использовали насыщенный хлоридсеребряный электрод, в качестве вспомогательного электрода – платиновый электрод. Потенциалы в работе приведены относительно стандартного водородного электрода, удельные величины отнесены к единице геометрической площади поверхности электрода.

Перед проведением измерений рабочую поверхность электрода шлифовали абразивными бумагами с последовательным уменьшением размера зерна, обезжиривали этиловым спиртом, ополаскивали деионизованной водой (удельное сопротивление воды - 18,2 МОм см, содержание органического углерода – 4 мкг/л), полученной с помощью системы очистки воды Milli-Q. Затем осуществляли обработку поверхности электрода путем химического травления в 15, 30, 45% HF в течение 15, 30, 45 мин при 25 и 60 °C, высокотемпературное травление также проводилось в условиях перемешивания раствора с помощью магнитной мешалки. Для приготовления растворов использовали деионизованную воду и реактивы H₂SO₄ и HF квалификации «х.ч.».

После обработки поверхности электрод многократно промывали деионизованной водой, ополаскивали рабочим раствором и переносили в электрохимическую ячейку для проведения импедансных измерений. Перед регистрацией спектров импеданса при каждом потенциале проводили потенциостатическую поляризацию электрода до установления практически постоянного значения тока, после чего начинали измерения импеданса

при данном *E* и более низких потенциалах, изменяя потенциал с определенным шагом. На основе полученных значений *i* для данного значения *E* строили катодные потенциостатические кривые. Диапазон используемых в импедансных измерениях частот $f(\omega/2\pi)$ составлял от 20 кГц до 0,008 Гц (10 точек на декаду при равномерном распределении по логарифмической шкале), амплитуда переменного сигнала – 10 мВ.

При измерениях и обработке данных использовали программы CorrWare2, ZPlot2, ZView2 (Scribner Associates, Inc.). Доверительные интервалы рассчитывали при уровне значимости, равном 0,05.

Морфологию, элементный и фазовый состав композиционного материала до и после обработки исследовали с помощью сканирующего электронного микроскопа S-3400N фирмы Hitachi с приставкой для энергодисперсионного анализа Quantax 200 фирмы Bruker и порошкового дифрактометра «D8 Advance».

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Катодные потенциостатические кривые Ті₃SiC₂/TiC/TiSi-электрода (без предварительной обработки электродной поверхности и подвергнутого обработке) в растворе 0,5М H₂SO₄ приведены на рис. 1; кривые построены с учетом поправки на омическое падение потенциала в растворе [24]. Из рис. 1 следует, что использованные виды обработки слабо влияют на ход поляризационных кривых, отмечается лишь сужение диапазона потенциалов регистрации линейной E,lgi-зависимости, сопровождающееся небольшим повышением тафелевского наклона b и снижением величины перенапряжения выделения водорода η при i = const(табл. 1). Результаты анализа катодных кривых показывают, что травление поверхности электрода в растворах HF приводит к заметному повышению скорости р.в.в. (в табл. 1 указано отношение скорости на обработанном электроде іобр к скорости на необработанном электроде i_{ucx} при E = -0,22 В); наибольшее увеличение вызывает высокотемпературное травление в растворе 30% HF в течение 30 мин при перемешивании раствора. На основе значений b, η (при 1 мA/см²) и результатов влияния обработки поверхности на скорость р.в.в. сделан вывод, что композиционный материал Ti₃SiC₂/TiC/TiSi в сернокислом электролите относится к материалам с невысоким перенапряжением выделения водорода и является перспективным для электролитического получения водорода.

Рис. 1. Катодные потенциостатические кривые Ti₃SiC₂/TiC/TiSi-электрода в 0,5М H₂SO₄: 1 – без обработки; 2 – химическое травление в 15% HF, 30 мин; 3 – в 30% HF, 30 мин; 4 – в 45% HF, 30 мин; 5 – в 30% HF, 15 мин; 6 – в 30% HF, 45 мин; 7 – в 30% HF, при 60 °C, 30 мин; 8 – в 30%

HF, при 60 °C, 30 мин, перемешивание Fig. 1. Cathodic potentiostatic polarization curves of Ti₃SiC₂/TiC/TiSi-electrode in 0.5M H₂SO₄: 1 – without treatment; 2 – chemical etching in 15% HF, 30 min; 3 – in 30% HF, 30 min; 4 – in 45% HF, 30 min; 5 – in 30% HF, 15 min; 6 – in 30% HF, 45 min; 7 – in 30% HF, at 60 °C, 30 min; 8 – in 30% HF, at 60 °C, 30 min, stirring

Фазы, входящие в состав исследуемого композиционного материала, обладают разной стабильностью в присутствии НF. Авторами [25, 26] показано, что карбид и карбосилицид титана проявляют высокую стойкость по отношению к фтороводородной кислоте; силицид титана заметно менее устойчив к действию HF. Согласно [27] силициды титана полностью растворяются в растворах фтороводородной кислоты. Однако в связи с тем, что кремний не взаимодействует с HF в отсутствии окислителей [28], по-видимому, более вероятно селективное растворение титана из силицида титана.

Химическое травление композиционного материала $Ti_3SiC_2/TiC/TiSi$ в растворах HF сопровождается интенсивным газовыделением (вероятно, выделением водорода), постепенно затухающим с течением времени. Исследование морфологии, элементного и фазового состава поверхности $Ti_3SiC_2/TiC/TiSi$ до и после травления показывает, что в результате обработки происходит селективное растворение силицида титана из поверхностного слоя материала (табл. 2; вероятно, происходит растворение титана из фазы силицида титана, сопровождаемое механическим удалением слабо сцепленного с поверхностью кремния).

Таблица 1

Влияние обработки на кинетику р.в.в. и характеристики поверхности Ti₃SiC₂/TiC/TiSi-электрода в растворе 0,5M H₂SO₄

Table 1. The influence of treatment on the hydrogen evolution reaction kinetics and the surface characteristics of
Ti ₃ SiC ₂ /TiC/TiSi-electrode in 0.5M H ₂ SO ₄ solution

Вид обработки	<i>-b</i> , B	<i>−</i> η, В при <i>i</i> = 1 мА/см ²	$i_{o \delta p}/i_{ucx}$	R_{Ω} , Ом·см ²	<i>f</i> ₀ , Гц
Без обработки	0,060±0,002	0,26±0,02	_	—	—
15% HF, 30 мин	0,066±0,002	0,25±0,03	1,6	$0,26\pm0,02$	101,2±8,7
30% HF, 30 мин	0,072±0,002	0,23±0,02	3,3	0,34±0,02	50,7±4,5
45% HF, 30 мин	0,073±0,002	0,23±0,02	3,8	0,38±0,02	40,2±3,1
30% HF, 15 мин	0,065±0,003	0,25±0,03	2,0	0,23±0,02	119,1±9,2
30% HF, 45 мин	0,076±0,003	0,23±0,02	4,5	0,51±0,02	25,4±2,3
30% HF, 60 °C, 30 мин	0,063±0,002	0,20±0,02	8,9	0,55±0,03	20,2±1,8
30% HF, 60 °C, 30 мин, перемешивание	0,064±0,003	0,20±0,02	9,8	0,57±0,03	15,4±1,4

Таблица 2

Фа	зовый и эле	ментныі	й состав по	оверхност	и Ti3Si	C ₂ /TiC/T	'iSi-электро	ода
Table 2.	Phase and el	emental	compositio	n of the su	rface o	f Ti ₃ SiC	/TiC/TiSi-e	lectrode

		Атомный %		Фазовый состав, масс. %		
Фаза	Элемент	HT For of proformer	Химическое травление	Без	Химическое травление в 30% HF,	
		вез обработки	в 30% HF, 30 мин обработки		30 мин	
	Ti	$52,3 \pm 2,4$	$49,1 \pm 2,6$			
Ti ₃ SiC ₂	Si	$17,8 \pm 1,5$	$15,1 \pm 1,3$	$66,3 \pm 2,5$	$73,1 \pm 2,8$	
	С	$29,9 \pm 2,1$	$35,8 \pm 1,8$			
TiC	Ti	$54,4 \pm 2,7$	$51,5 \pm 2,4$		23,7 ± 1,7	
	Si	$2,3 \pm 0,3$	$1,4 \pm 0,2$	$21,6 \pm 1,4$		
	С	$43,3 \pm 1,8$	$47,1 \pm 2,3$			
TiSi	Ti	$50,1 \pm 2,6$	$51,1 \pm 2,4$			
	Si	$45,6 \pm 1,7$	$15,5 \pm 1,2$	$12,1 \pm 0,8$	$3,2 \pm 0,2$	
	С	$4,3 \pm 0,5$	$33,4 \pm 1,7$			

Для уточнения влияния обработки поверхности Ti₃SiC₂/TiC/TiSi-электрода на кинетические закономерности р.в.в. проведены измерения частотных зависимостей составляющих импеданса при различных потенциалах.

В работе [29] было показано, что спектры импеданса Ti₃SiC₂/TiC-электрода при потенциалах тафелевской области в растворе 0,5 М H₂SO₄ состоят из емкостной полуокружности при высоких частотах (ВЧ) и индуктивной дуги при низких частотах. Спектры импеданса Ti₃SiC₂/TiC/TiSi-электрода представляют собой емкостную полуокружность с центром ниже оси действительной составляющей импеданса; на графиках импеданса обработанного электрода в области наиболее высоких частот регистрируется короткий прямолинейный участок, свидетельствующий о присутствии пор в поверхностном слое электрода (рис. 2, где Z' и Z" действительная и мнимая составляющие импеданса) [30]. Наклон линейного ВЧ-участка заметно выше 45°, что может быть связано с геометрическими параметрами пор (широкое распределение пор по размерам, преобладание более открытых конических пор), небольшим количеством пор на единице поверхности электрода и др. Для обработанного $Ti_3SiC_2/TiC/TiSi$ более вероятным фактором, обусловливающим полученные значения наклона, по-видимому, является влияние геометрических характеристик пор.

При повышении интенсивности и продолжительности обработки линейный ВЧ-участок на спектрах импеданса $Ti_3SiC_2/TiC/TiSi$ -электрода становится более выраженным. Значения сопротивления R_{Ω} и частоты f_0 , характеризующие этот участок, для разных видов обработки поверхности приведены в табл. 1. Сопротивление R_{Ω} , равное расстоянию между точкой, полученной экстраполяцией прямолинейного участка в область высоких частот до пересечения с осью Z', и точкой, полученной экстраполяцией емкостной полуокружности в ВЧ-область до пересечения с осью Z', определяет полное сопротивление раствора в порах [30]. Частота f_0 соответствует точке перехода от прямолинейного ВЧ-участка к емкостной полуокружности; при частоте f_0 переменный ток проходит на всю длину пор, и при $f \le f_0$ электрод с порами ведет себя как гладкий электрод с площадью поверхности, равной полной поверхности электрода, включая внутреннюю поверхность пор [30]. Повышение R_{Ω} и уменьшение f_0 с ростом интенсивности и продолжительности обработки свидетельствуют об увеличении размера пор, преимущественно об увеличении их глубины.

Для моделирования р.в.в. на Ti₃SiC₂/TiCэлектроде в работе [29] была использована эквивалентная электрическая схема, представленная на рис. 3. В этой схеме: R_s – сопротивление электролита, R_1 – сопротивление переноса заряда, сопротивление R₂ и емкость C₂ описывают адсорбцию атомарного водорода Н_{аds} на поверхности электрода, элемент постоянной фазы СРЕ1 моделирует двойнослойную емкость на неоднородной поверхности твердого электрода. При $R_2 < 0$ и $C_2 < 0$ схема на рис. 3 соответствует спектрам импеданса с емкостной полуокружностью в ВЧ-области и с индуктивностью в области низких частот, при $R_2 > 0$ и $C_2 > 0$ – спектрам импеданса, расположенным в емкостной полуплоскости. Физический смысл элементов R₁, R₂, C₂ обсуждается в работе [31]. Импеданс элемента СРЕ равен [24]:

$$Z_{\rm CPE} = Q^{-1}(j\omega)^{-p},$$

где Q – численное значение адмиттанса при ω = 1 рад/с, p – параметр, характеризующий фазовый угол СРЕ.

Для описания р.в.в. на Ti₃SiC₂/TiC/TiSiэлектроде использована схема на рис. 3 с положительными R_2 и C_2 . При моделировании спектров импеданса обработанного электрода с целью изучения кинетики и механизма выделения водорода брали точки при $f < f_0$. Последнее позволяет использовать эквивалентные схемы, применяемые для моделирования процессов на гладких электродах.

Рис. 3. Эквивалентная электрическая схема для Ti₃SiC₂/TiC/TiSi-электрода в сернокислом электролите при потенциалах выделения водорода Fig. 3. Equivalent electrical circuit for Ti₃SiC₂/TiC/TiSi-electrode in the sulfuric acid electrolyte at the potentials of hydrogen evolution

Эквивалентная схема на рис. З удовлетворительно описывает экспериментальные спектры импеданса Ti₃SiC₂/TiC/TiSi. Для электрода, подвергнутого химическому травлению в 30% HF в течение 30 мин, критерий χ^2 и среднее квадратичное отклонение составляют (0,5–2,2)·10⁻⁵ и (0,3–1,4)·10⁻³, соответственно; ошибка определения значений параметров R_s , R_2 и CPE₁ не превышает 1-3%, параметров R_1 и $C_2 - 5-7$ %. Значения элементов схемы приведены в табл. 3.

Таблица З

Значения параметров эквивалентной схемы на рис. 3 для Ti₃SiC₂/TiC/TiSi-электрода (химическое травление в 30% HF, 30 мин) в 0,5M H₂SO₄

Table 3. The values of the equivalent circuit parameters in Fig.3 for Ti₃SiC₂/TiC/TiSi-electrode (chemical etching in 30% HF, 30 min) in 0.5M H₂SO₄

- <i>E</i> ,	R_1 ,	R_2 ,	$C_2 \cdot 10^3$,	$Q_1 \cdot 10^3$,	<i>n</i> .			
В	Ом·см ²	Ом · см ²	$\Phi \cdot cm^{-2}$	Φ ·см ⁻² ·с ^{(p} 1 ⁻¹⁾	P_1			
0,18	2,06	239,3	4,82	2,11	0,761			
0,20	1,74	131,6	4,48	2,55	0,831			
0,22	1,84	74,1	3,31	3,76	0,913			
0,24	3,10	41,7	2,21	5,00	0,945			
0,26	3,07	25,2	2,42	4,91	0,948			
0,28	3,36	15,1	2,67	4,86	0,958			

Вычисленные значения элементов фарадеевского импеданса ($X = R_1, R_2, C_2$) проанализированы в зависимости от потенциала в полулогарифмических координатах. Для Ti₃SiC₂/TiC/TiSi-электрода (без предварительной обработки электродной поверхности и подвергнутого обработке) на lgX,E-зависимостях ($X = R_1, R_2, C_2$), исправленных на омическое падение потенциала, регистрируется слабое изменение параметров lg R_1, lgC_2 и линейное снижение параметра $\lg R_2$ с ростом катодной поляризации. На рис. 4 представлены $\lg X_*E$ -зависимости для электрода, подвергнутого химическому травлению в 30% НF в течение 30 мин; в табл. 4 указаны величины наклонов $(\partial \lg X/\partial E)_{C_{H^+}}$ для всех видов обработки поверхности.

Слабое изменение $\lg R_1$, $\lg C_2$ и линейное уменьшение lgR_2 при понижении потенциала являются характерными для механизмов разряд - электрохимическая десорбция и разряд – рекомбинация с квазиравновесной стадией разряда при выполнении логарифмической изотермы адсорбции Темкина для H_{ads} [32]. Теоретическое значение тафелевского наклона b для этих механизмов согласно [33] соответствует ~ -0,06 В и, таким образом, удовлетворительно согласуется со значениями, полученными для Ti₃SiC₂/TiC/TiSi-электрода (табл. 1). Из рассматриваемых маршрутов р.в.в. для Ti₃SiC₂/TiC/TiSi более вероятным, по-видимому, является маршрут разряд – электрохимическая десорбция, так как: 1) ранее [29] на основе импедансных данных было показано, что на Ti₃SiC₂/TiC выполняется маршрут разряд – электрохимическая десорбция; 2) поляризационные и импедансные измерения на Ti₃SiC₂/TiC/TiSi проведены при значениях перенапряжения более 0,1 В, которые являются слишком высокими для того, чтобы р.в.в. протекала по маршруту разряд – рекомбинация [34].

Рис. 4. Зависимости lgX (X: $1 - R_1$, $2 - R_2$, $3 - C_2$) от потенциала Ti₃SiC₂/TiC/TiSi-электрода (химическое травление в 30% HF, 30 мин) в 0,5М H₂SO₄. Единицы измерения: R_1

и R_2 – в Ом×см², C_2 – в мкФ/см² Fig. 4. Dependences of lgX (X: 1 – R_1 , 2 – R_2 , 3 – C_2) on the potentials of Ti₃SiC₂/TiC/TiSi-electrode (chemical etching in 30% HF, 30 min) in 0.5M H₂SO₄. Values of R_1 и R_2 in Ohm×см², C_2 – в µF/cm²

Таблица 4

Величины наклонов $(\partial \lg X / \partial E)_{c_{H^+}}$ (X = R₁, R₂, C₂) для Ti₃SiC₂/TiC/TiSi-электрода в 0,5M H₂SO₄ *Table 4.* The values of slopes $(\partial \lg X / \partial E)_{c_{H^+}}$ (X = R₁, R₂, C₂) for Ti₃SiC₂/TiC/TiSi-electrode in 0.5M H₂SO₄

Вид обработки	$\left(\frac{\partial \lg R_{\rm I}}{\partial E}\right)_{c_{\rm H^+}}, {\rm B}^{-1}$	$\left(\frac{\partial \lg R_2}{\partial E}\right)_{c_{H^+}}, \mathbf{B}^{-1}$	$\left(\frac{\partial \log C_2}{\partial E}\right)_{c_{\mathrm{H}^+}}, \mathrm{B}^{-1}$
Без обработки	-1,7±0,2	12,6±0,3	2,2±0,2
15% HF, 30 мин	-1,9±0,2	13,5±0,4	2,3±0,2
30% HF, 30 мин	-2,8±0,2	12,7±0,3	3,0±0,2
45% HF, 30 мин	-1,3±0,1	12,4±0,3	2,8±0,2
30% HF, 15 мин	-1,6±0,2	13,4±0,4	2,1±0,2
30% HF, 45 мин	-2,0±0,2	12,5±0,3	2,4±0,2
30% HF, 60 °С, 30 мин	-2,7±0,2	14,5±0,5	2,9±0,2
30% HF, 60 °C, 30 мин, перемешивание	-2,2±0,2	13,8±0,5	1,9±0,2

ЗАКЛЮЧЕНИЕ

Исследовано влияние обработки поверхностного слоя композиционного материала Ti₃SiC₂/ /TiC/TiSi растворами HF различной концентрации на его активность в реакции выделения водорода в сернокислом электролите. Обнаружено, что обработка поверхности путем химического травления в 15, 30, 45% HF в течение 15, 30, 45 мин при 25 и 60 °C приводит к снижению перенапряжения выделения водорода. Последнее обусловлено развитием и изменением состава поверхностного слоя электрода. Показано, что реакция выделения водорода на Ti₃SiC₂/TiC/TiSi-электроде протекает по маршруту разряд – электрохимическая десорбция с квазиравновесной стадией разряда при выполнении логарифмической изотермы Темкина для адсорбированного атомарного водорода. Сделан вывод, что композиционный материал Ti₃SiC₂/TiC/TiSi относится к материалам с невысоким перенапряжением В.В. Пантелеева и др.

выделения водорода и, таким образом, является перспективным для электролитического получения водорода.

Исследования выполнены при финансовой поддержке Пермского научно-образовательного центра «Рациональное недропользование», 2023 г.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Funding: The research was supported by the Perm Research and Education Centre for Rational Use of Subsoil, 2023.

The authors declare the absence a conflict of interest warranting disclosure in this article.

ЛИТЕРАТУРА REFERENCES

- Kovac A., Paranos M., Marcius D. Hydrogen in energy transition: A review. *Int. J. Hydrog. Energy*. 2021. V. 46. N 16. P. 10016-10035. DOI: 10.1016/j.ijhydene.2020.11.256.
- Baykara S.Z. Hydrogen: A brief overview on its sources, production and environmental impact. *Int. J. Hydrog. Energy.* 2018. V. 43. N 23. P. 10605-10614. DOI: 10.1016/j.ijhydene. 2018.02.022.
- Tarhan G., Cil M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. *J. Energy Storage*. 2021. V. 40. P. 102676-102685. DOI: 10.1016/j.est.2021.102676.
- Nikolaidis P., Poullikkas A. A comparative overview of hydrogen production processes. *Renew. Sustain. Energy Rev.* 2017. V. 67. P. 597-611. DOI: 10.1016/j.rser.2016.09.044.
- Wirth S., Harnisch F., Weinmann M., Schröder U. Comparative study of IVB-VIB transition metal compound electrocatalysts for the hydrogen evolution reaction. *Appl. Catal. B: Environ.* 2012. V. 126. P. 225-230. DOI: 10.1016/j.apcatb.2012.07.023.
- Eftekhari A. Electrocatalysts for hydrogen evolution reaction. *Int. J. Hydrog. Energy.* 2017. V. 42. N 16. P. 11053-11077. DOI: 10.1016/j.ijhydene.2017.02.125.
- Verma J., Goel S. Cost-effective electrocatalysts for Hydrogen Evolution Reactions (HER): Challenges and Prospects. *Int. J. Hydrog. Energy.* 2022. V. 47. N 92. P. 38964-38982. DOI: 10.1016/j.ijhydene.2022.09.075.
- Zhang Z., Duan X., Jia D., Zhou Y., Sybrand Z. On the formation mechanisms and properties of MAX phases: A review. *J. Eur. Ceram. Soc.* 2021. V. 41. N 7. P. 3851-3878. DOI: 10.1016/j.jeurceramsoc.2021.02.002.
- Rosli N.F., Nasir M.Z.M., Antonatos N., Sofer Z., Dash A., Gonzalez-Julian J., Fisher A.C., Webster R.D., Pumera M. MAX and MAB Phases: Two-Dimensional Layered Carbide and Boride Nanomaterials for Electrochemical Applications. *ACS Appl. Nano Mater.* 2019. V. 2. N 9. P. 6010-6021. DOI: 10.1021/acsanm.9b01526.
- Kumar K.P.A., Alduhaish O., Pumera M. Electrocatalytic activity of layered MAX phases for the hydrogen evolution reaction. *Electrochem. Commun.* 2021. V. 125. 106977. DOI: 10.1016/j.elecom.2021.106977.
- Jovic V.D., Jovic B.M., Gupta S., El-Raghy T., Barsoum M.W. Corrosion behavior of select MAX phases in NaOH, HCl and H₂SO₄. *Corros. Sci.* 2006. V. 48. N 12. P. 4274-4282. DOI: 10.1016/j.corsci.2006.04.005.

- Travaglini J., Barsoum M.W., Jovic V., El-Raghy T. The corrosion behavior of Ti₃SiC₂ in common acids and dilute NaOH. *Corros. Sci.* 2003. V. 45. N 6. P. 1313-1327. DOI: 10.1016/S0010-938X(02)00227-5.
- Jaccaud M., Leroux F., Millet J.C. New chlor-alkali activated cathodes. *Mater. Chem. Phys.* 1989. V. 22. N 1-2. P. 105-119. DOI: 10.1016/0254-0584(89)90033-3.
- Safizadeh F., Ghali E., Houlachi G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions A Review. *Int. J. Hydrog. Energy.* 2015. V. 40. N 1. P. 256-274. DOI: 10.1016/j.ijhydene.2014.10.109.
- Rad P.J., Aliofkhazraei M., Darband Gh.B. Ni-W nanostructure well-marked by Ni selective etching for enhanced hydrogen evolution reaction. *Int. J. Hydrog. Energy.* 2019. V. 44. N 2. P. 880-894. DOI: 10.1016/j.ijhydene.2018.11.026.
- Shi J., Qiu F., Yuan W., Guo M., Yuan C., Lu Z.-H. Novel electrocatalyst of nanoporous FeP cubes prepared by fast electrodeposition coupling with acid-etching for efficient hydrogen evolution. *Electrochim. Acta.* 2020. V. 329. 135185. DOI: 10.1016/j.electacta.2019.135185.
- Пономарева А.Е., Пантелеева В.В., Шеин А.Б. Электрохимическая активность дисилицида титана в реакции выделения водорода в щелочном электролите. Изв. вузов. Химия и хим. технология. 2022. Т. 65. Вып. 3. С. 52-59. DOI: 10.6060/ivkkt.20226503.6495.

Ponomareva A.E., Panteleeva V.V., Shein A.B. Electrochemical activity of titanium disilicide in hydrogen evolution reaction in alkaline electrolyte. *ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.].* 2022. V. 65. N 3. P. 52-59 (in Russian). DOI: 10.6060/ivkkt.20226503.6495.

- Handoko A.D., Fredrickson K.D., Anasori B., Convey K.W., Johnson L.R., Gogotsi Yu., Vojvodic A., She Z.W. Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) to Control Hydrogen Evolution Activity. ACS Appl. Energy Mater. 2018. V.1. N 1. P. 173-180. DOI: 10.1021/acsaem.7b00054.
- Zhang Ch.J., Ma Y., Zhang X., Abdolhosseinzadeh S., Sheng H., Lan W., Pakdel A., Heier J., Nuesch F. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. *Energy Environ. Mater.* 2020. V. 3. N 1. P. 29-55. DOI: 10.1002/eem2.12058.
- Bai S., Yang M., Jiang J., He X., Zou J., Xiong Z., Liao G., Liu S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. *Npj 2D Mater. Appl.* 2021. V. 5. N 78. P. 1-15. DOI: 0.1038/s41699-021-00259-4.
- Li Yu., Zhang B., Wang W., Shi X., Zhang J., Wang R., He B., Wang Q., Jiang J., Gong Y., Wang H. Selectiveetching of MOF toward hierarchical porous Mo-doped CoP/N-doped carbon nanosheet arrays for efficient hydrogen evolution at all pH values. *Chem. Eng. J.* 2021. V. 405. 126981. DOI: 10.1016/j.cej.2020.126981.
- Chen X., Li D., Wen Y., Zhang H., Li Yu., Ni H. Favorable surface etching of NiRuFe(OH)_x in neutral hydrogen evolution reaction. *Catal. Today.* 2022. V. 400-401. P. 1-5. DOI: 10.1016/j.cattod.2022.04.005.
- Анциферов В.Н., Каченюк М.Н., Сметкин А.А. Закономерности уплотнения и фазообразования в системе Ti-SiC-C при плазменно-искровом спекании. *Новые огнеупоры.* 2015. № 4. С. 16-19. DOI: 10.17073/1683-4518-2015-4-16-19.

Antsiferov V.N., Kachenyuk M.N., Smetkin A.A. Packing and phase formation regularities in Ti-SiC-C system at sparkplasma sintering. *Novye Ogneupory*. 2015. N 4. P. 16-19 (in Russian). DOI: 10.17073/1683-4518-2015-4-16-19.

- 24. **Orazem M.E., Tribollet B.** Electrochemical Impedance Spectroscopy. Hoboken: John Wiley and Sons. 2008. 533 p.
- Mikeska K.R., Bennison S.J., Grise S.L. Corrosion of Ceramics in Aqueous Hydrofluoric Acid. *J. Am. Ceram. Soc.* 2000. V. 83. N 5. P. 1160-1164. DOI: 10.1111/J.1151-2916.2000.TB01348.X.
- Alhabeb M., Maleski K., Mathis T.S., Sarycheva A., Hatter Ch.B., Uzun S., Levitt A., Gogotsi Yu. Selective Etching of Silicon from Ti₃SiC₂ (MAX) Produces 2D Titanium Carbide (MXene). *Angew. Chem. Int. Ed.* 2018. V. 57. N 19. DOI: 10.1002/anie.201802232.
- Самсонов Г.В., Дворина Л.А., Рудь Б.М. Силициды. М.: Металлургия. 1979. 272 с.
 Samsonov G.V., Dvorina L.A., Rud' B.M. Silicides. M.: Metallurgiya. 1979. 272 p. (in Russian).
- Thissen P., Seitz O., Chabal Y.J. Wet chemical surface functionalization of oxide-free silicon. *Prog. Surf. Sci.* 2012. V. 87. N 9-12. P. 272-290. DOI: 10.1016/j.progsurf.2012.10.003.
- Пантелеева В.В., Пономарева А.Е., Фирсова О.А., Шеин А.Б., Каченюк М.Н. Электрохимическая активность композиционного материала Ti₃SiC₂/TiC в реакции выделения водорода. *Изв. вузов. Химия и хим. технология.* 2023. Т. 66. Вып. 12. С. 117-123. DOI: 10.6060/ivkkt.20236612.6774.

Panteleeva V.V., Ponomareva A.E., Firsova O.A., Shein A.B., Kachenyuk M.N. Electrochemical activity of Ti₃SiC₂/TiC composite material in the hydrogen evolution reaction. *ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.].* 2023. V. 66. N. 12. P. 117-123 (in Russian). DOI: 10.6060/ivkkt.20236612.6774.

- Lasia A. Modeling of impedance of porous electrode. In: Modern Aspects of Electrochemistry. N 43. Ed. by M. Schlesinger. New York: Springer. 2009. P. 67-137.
- Harrington D.A., Conway B.E. Impedance of Faradaic reactions involving electrosorbed intermediates – I. Kinetic theory. *Electrochim. Acta*. 1987. V. 32. N 12. P.1703-1712. DOI: 10.1016/0013-4686(87)80005-1.
- Kichigin V.I., Shein A.B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. *Electrochim. Acta.* 2014. V. 138. P. 325-333. DOI: 10.1016/j.electacta.2014.06.114.
- Thomas J.G.N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. *Trans. Farad. Soc.* 1961. V. 57. N 9. P. 1603-1611. DOI: 10.1039/TF9615701603.
- Кришталик Л.И. Электродные реакции. Механизм элементарного акта. М.: Наука. 1979. 224 с.
 Krishtalik L.I. Electrode reactions. The mechanism of the elementary act. М.: Nauka. 1979. 224 р. (in Russian).

Поступила в редакцию 26.04.2023 Принята к опубликованию 29.09.2023

Received 23.04.2023 Accepted 29.09.2023