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H3yuenvl cnekmpul A0epHO20 MAZHUNIHOZ20 PE30HAHCA C 6PAU{CHUEM NOO MAZUYECKUM Y2-
aom (AAIMP BMY) obozauiennozo kaonuna mecmopoxycoenus Kypaenunwtii Jloe (Yenaounckas
o6nacmv, Poccus) u npodykmos ezo nazpesanus. B ucxoonom xaonume cunvnwlii cuznan *Si
Hnaonwoanca npu —91,2 ppm, Komopslii coomeemcmeosan XapaKmepHomy pe3oHancy ciloucmoil
cunuxammnoii cmpykmypui, He codepycawieii Al mempasopos (Q*(0Al)). Iocne nazpesanus oo 800 °C
yenmp cuznana Si cmewyanca k —102,9 ppm. Iux cmanosuncs wupe, 4GCMUYHO ACUMMEMPUY-
HbLM, 4MO MO2710 YKA3bL6AMb HA PAZYHOPAOOUEHHYIO cloucmylo cmpykmypy memaxaonuna (Q°).
IIpu 900 °C yenmp cnexmpanvnoii aunuu naxoouncsa npu —106,8 ppm (Q* Si), umo coomeem-
CME06ano npucymcmeuio amoprozo kpemnus unu kpucmoovaruma. Cnexmp >’ Al AMP ucxoo-
HO20 KAONUHUMA COCMOAT U3 eOUHCMEEHHOI OCMPOIL TuHUU ¢ yenmpom npu 1,3 ppm, omuecen-
noii k AlY\. Tennoean oopabomxa eviure 500 °C npugoouna K uacmuunomy paspyuieHuio ciou-
CMoil cCmpPYKmypbl; nOAGIAIUCH 06e Hogble aunuu npu 58,1-60,2 u 29,0-32,9 ppm, komopuie co-
omeemcmeosanu amomam Al'Vu AlY coomeemcmeenno. Humencusnocms cuznana Al" évicmpo
6o3pacmana. HcxoOHwlil KAOIUH UMel 0CHPOY20NbHbIE YACULYbL NCEGO02EKCAZOHANbHOUL (hopmbl,
Komopble yKa3vléaau HaA GblCOKYIO YRopaooueHHocmy cmpykmypol munepana. C noseviuienuem
memnepamypul oopadomxu (800-1200 °C) uewryiiku cmanosunuce 60iee OKpy2ieHHbIMU, @ RPU
1000-1200 °C nabarooanace ux azromepayus. Ilo oannvim ounamomempuueckoii Kpugsoi Kao-
auna, 8 unmepesanax 500-650 °C u 630-880 °C naodnrodanace nebonvuias ycaoka, omHeceHHas K
0€e2UOPOKCUNUPOCAHUIO KAOJIUHUMA U CMPYKMYPHOIL NepecmpoiiKe MemaKkaotuHuma coomeent-
cmeenno ¢ nociedyrowum nepexooom 6 Si-Al winunens evtuie 900 °C.

KuroueBble cjioBa: KaoJluH, KAOJIUHUT, JKypaBinuHsblil Jlor, MeTakaonuHUT, SIACPHBIA MAarHUTHBINA Pe30-
HAHC, TUJIATOMETPUsI, MOP(HOJIOTHS
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MAS NMR spectra of concentrated kaolin of the Zhuravliny Log deposit (Chelyabinsky
district, Russia) and its heated products were studied. In a raw concentrated kaolin, a sharp ab-
sorption of 29Si NMR was observed at —91.2 ppm, which corresponded to the characteristic signal
of layered structure in silicates with no Al tetrahedra (Q*(0Al)). In the heated at 800 °C samples,
the center of the Si resonance shifted to —102.9 ppm. The peak became broader and partially asym-
metric that might ascribe the disordered layered structure of metakaolin (Q?® state). At 900 °C the
spectral line center was at —106.8 ppm (Q* Si) related to the presence of amorphous SiO; or cristo-
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balite. The 2’Al NMR spectrum of a raw kaolinite consisted of only a single sharp resonance cen-
tered at 1.3 ppm which was assigned to AlY'. Heat treatment at a temperature above 500 °C led to
the partial destruction of the layered structure. Two new lines appeared at 58.1-60.2 and 29.0-32.9 ppm
which were attributed to both Al atoms in tetrahedral and penta-coordinated positions, respectively.
The signal intensity of Al'Y peak increased rapidly. The raw kaolinite had particles with angular
edges of pseudo-hexagonal form which suggested a well-ordered mineral. The burning temperature
increasing (800-1200 °C), flakes got the more rounded boundaries. At 1000-1200 °C flakes were
agglomerated. According to the dilatometry curve for kaolin, in 500-650 °C and 630-880 °C inter-
vals there was a small shrinkage which was related to dehydroxylation of kaolinite and structural
reorganization of metakaolinite, respectively, with the subsequent transformation into the Si-Al
spinel phase above 900 °C.

Key words: kaolin, kaolinite, Zhuravliny Log, metakaolinite, MAS NMR, dilatometry, morphology
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INTRODUCTION

Earlier [1], there were studied chemical and
dispersion characteristics of the Zhuravliny Log kao-
lin, its dehydroxylation, and phase formation by ther-
mal, X-ray analysis, and infrared spectroscopy. It was
of interest to find out whether pentacoordinated alumi-
num AlV is present during the thermal transformations
of kaolin. Al and Si in different forms stay accompa-
nied by oxygen atoms but their coordination number
and therefore coordination polyhedrons may change.
First, it concerns aluminum ions. There are two points
of view. Authors [2, 3] discussed the possibilities of
only two #’Al signals corresponding to Al'Y and AIV'.
The most part of researchers [4-11] reported three 2’Al
resonances for tetrahedral (Al'), penta-coordinated
(AIY) and octahedral (AIV") coordination.

The magic angle spinning nuclear magnetic
resonance (MAS-NMR) techniques for 2’Al is an ef-
fective method of coordination and local structure
study as differently coordinated Al atoms have differ-
ent chemical shifts. It is known that 2’Al shift differ-
ences among AlOs (octahedral ion, O-positions) at 0-
20 ppm and AlQO; (tetrahedral ion, T-positions) at 50-
80 ppm, and AlOs (penta-coordinated species, P-posi-
tions) at 20-50 ppm [6, 7]. L. Andrini et.al. [10] found
by XANES (X-ray Absorption Near Edge Structure)
not only 1V, V, and VI coordination, but also 111 coor-
dination for one of investigated kaolin. Al had octahe-
dral coordination in kaolinite, and Al'", AlV, AIV! coor-
dination were identified for metakaolin. Finally, Al'Y
and AIV' were found in the spinel type aluminosilicate
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and mullite. This knowledge will help to understand
the relationship between kaolin structure and its acid-
activation reactivity [12-15].

The practical use of any kaolin demands some
information on volume and crystal morphology changes
during the heating. So, the aim of this study was to de-
termine a distribution Al atoms between differently co-
ordinated positions using MAS NMR spectroscopy and
to characterize the dilatometric behaviour and morphol-
ogy of the Zhuravliny Log kaolin. The knowledge of zeta
potential that is necessary to value the kaolin applica-
tion possibility in a casting slipping was characterized
earlier [12-16].

MATERIALS AND EXPERIMENTS

The mineral composition of a raw kaolin of the
Zhuravliny Log deposit (Chelyabinsky region, Russia)
and oxide content of a concentrated samples were de-
scribed earlier [1].

Z’Al and #Si MAS-NMR spectra were ob-
tained by magic angle spinning (54°44") using a
BRUKER AVANCE 400 spectrometer operating at
104.23 MHz for 2’ Al and 79.46 MHz for 2°Si. Rotation
frequencies of 10 and 12 kHz were used for the ?’Al
(400 accumulations) and 2°Si (1800 accumulations)
MAS spectra, respectively. 2’Al and 2°Si chemical
shifts were determined using 1 M AI(NO3)s solution
and 10% (CHs)4Si solution, relatively, as the external
references having chemical shift at 0 ppm [3].

The particle morphology of the kaolin sample
was analyzed using the micrographs (SEM) obtained by
a scanning electron microscope Tescan VEGA 3 SBH.
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The thermal irreversible changes of samples
were determined by the dilatometer measurements for
pre-dried compacted samples from room temperature
up to 1050 °C at a heating rate of 10 °C min™ in air
atmosphere using Netzsch Dil402 PC.

RESULTS

Fig. 1 shows 2°Si MAS NMR spectra of a raw
concentrated kaolin and its heated products. In the
first sample, a sharp absorption of 2°Si NMR was ob-
served at —91.2 ppm with full-width-at-half-maxi-
mum (FWHM) of ~4 ppm, which corresponded to the
characteristic signal of layered structure in silicates [3],

-91.2
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i.e., was also characteristic of layered silicates with no
Al tetrahedra (Q3(0Al)) [4, 5]. It might indicate that Si
was linked via oxygens to three other Si atoms in a
three-dimensional network of SiO, tetrahedra [2]. In
heated at 800 °C samples, the center of the Si reso-
nance shifted to —102.9 ppm. The tetrahedral sheets be-
gan to change at that, the peak became broader and sim-
ultaneously partially asymmetric. FWHM increased to
~19 ppm, so, this peak might ascribe the disordered
layered structure of metakaolin. Its shift might be
caused by changes of bond-length, bond-angle, etc. Si in
metakaolinite was dominantly present in Q? state [5].
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Fig. 1. 2°Si NMR-spectra of a raw concentrated kaolin (a) and its burned products at various temperatures, °C: 500 (b), 800 (c), 900 (d)
Puc. 1. Criextps IMP 2°Si chIporo KOHIEHTPUPOBAHHOTO (&) U TepMOOOPaBOTAHHOTO IIPH Pa3IHUHBIX TeMIepaTypax kaonusa, °C: 500 (b),
800 (c), 900 (d)

With temperature growth a greater amount of
amorphous SiO; began to emerge. At 900 °C the spec-
tral line center was at —106.8 ppm that was character-
istic of the Q* Si environments [11] related to the pres-
ence of amorphous SiO; or cristobalite (Si surrounded
by four Si — Si(OSi)a).

As shown in Fig. 2, MAS NMR spectra of the
2TAl chemical shifts are significantly different at vari-
ous temperatures.

NMR 2’Al spectra of samples of a raw concen-
trated kaolin and kaolin after heat treatment showed
changes in the coordination of aluminum atoms in the
structures. The 2’Al NMR spectrum of a raw kaolinite
(a) consisted of only a single sharp resonance centered
at 1.3 ppm which could be assigned to hexacoordinated
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Al atoms (AIV") in AlQg structure. This kind of spec-
trum was consistent with data on the natural kaolin
structure, according to which aluminum is in an octa-
hedral layer of silicate. Heat treatment at a temperature
above 500 °C led to the partial destruction of the lay-
ered structure, the intensity of this line decreases, and
in the spectrum (Fig. 1, c) two new lines appeared at
58.1-60.2 and 29.0-32.9 ppm which were attributed to
both Al atoms in T- and P-positions, respectively. The
peaks were rather well-resolved. Metakaolin contained
approximately equal amounts of tetrahedral (Al'Y), oc-
tahedral (AIV') and penta-coordinated Al (AlY).

As the firing temperature increased, the ratio
of intensities of these peaks changed. Part of the alumi-
num came out of its O-positions in the lattice and went
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into T-positions. The reduction of the 29.0-32.9 ppmssig- ~ Al'Y peak increased rapidly. The AIV' peak apparently
nal under further heating might indicate that penta-co-  weakened, i.e., the AlO4(OH) sheet of kaolinite col-
ordinated Al nuclei (AIY) were generated as an inter-  lapsed and was reordered.

mediate stage of transformation between AlV'and Al'Y. Fig. 3 shows SEM images of particles mor-
Al-atoms in metakaolin might be in unsaturated and dis-  phology for a raw concentrated kaolin and powders
torted state. The signal intensity of the 58.1-60.2 ppm burned at 800, 1000, and 1200 °C, respectively.
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Fig. 2. 27Al NMR-spectra of a raw concentrated kaolin (a) and its burned products at various temperatures, °C: 500 (b), 600 (c), 700 (d),
800 (e), 900 (f)
Puc. 2. Criektpsl IMP 2’Al cBIpOro KOHIIEHTPHPOBAHHOTO (a) M TEPMOOOPa-G0TAHHOTO MPH Pa3IMIHBIX TEMIEpPaTypax KaoauHa, °C:
500 (b), 600 (c), 700 (d), 800 (e), 900 (f)

d) 1200

c) 1000

Fig. 3. SEM images of a raw concentrated kaolin (a) and its burned products at various temperatures, °C: 800 (b), 1000 (c), 1200 (d)

Puc. 3. COM-u300paxeHus CHIPOro KOHIIEHTPUPOBAHHOTO (@) U TepMOOOPabOTaHHOTO MTPU Pa3IMYHBIX TEMIIepaTypax KaojiuHa, °C:
800 (b), 1000 (c), 1200 (d)

ChemChemTech. 2024. V. 67.N 2 49



H.®. Kocenko u nip.

0,005

0,000

dL/L,

T T T T
100 200 300 400

-0,005 ~
-0,010 ~

-0,015 +

-0,020 ~

T
500

1
1100
T (°C)

T T T
800 900 1000

Fig. 4. Dilatometry curve for a raw concentrated kaolin
Puc. 4. lnnatomerpryeckas KpuBasi CBIporo KOHIEHTPUPOBAHHOTO KaolInHa

The raw kaolinite showed particles with angu-
lar edges which suggested a well-ordered mineral.
Most of initial particles were lamellar of pseudo-hex-
agonal form. The morphology did not exhibit signifi-
cant differences as it was noted earlier [17-19]. Parti-
cles burned at 800 °C were also flaky with slight
changes. The burning temperature increasing (800-
1200 °C), flakes got the more rounded boundaries. At
1000-1200 °C, flakes were stacked one by one to form
agglomerates.

The dilatometer measurements (Fig. 4) showed
a sequence of linear changes for a raw concentrated ka-
olin sample.

A slight regular expansion was observed from
room temperature up to 500 °C. Between 500 °C and
650 °C, kaolin showed a small contraction which was
related to dehydroxylation of kaolinite and its transfor-
mation into metakaolinite. No expansion at about 570-
580 °C which could indicate a«>p-quartz inversion
was observed because of a small quantity of the free
quartz. A very slight shrinkage between 630 and 880 °C
was believed to be caused by structural reorganization
of metakaolinite with the subsequent transformation
into the Si-Al spinel phase in the interval above 900 °C.
A considerable contraction might also indicate the start
of the sintering [13-20].

CONCLUSION

Si and Al atoms' coordination was studied by
MAS NMR method. Transitions AIY' (in a raw kaolin-
ite up to 500 °C) — AIV' + AIV + AlI'Y (600-900 °C)
with an essential dominance of Al'Y at 900 °C were no-
ticed. Si atoms' environment was not practically
changed under such conditions (Si'V), but layered
structure (Q®) became amorphous (Q*). The morphol-
ogy of kaolin's grains was described. The linear size
changes of a sample under heating up to 1050 °C were
analyzed. The shrinkage was related to kaolinite —
metakaolinite transition and to the subsequent for-
mation of Si-Al spinel phase.
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