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Heoagnue coobuienus o HO8bIX NPOOIEMAX 3A2PAIHEHUA, LI36AHHBIX RPUCYIMCINGUEM Jle-
Kapcme 6 800HOIL cpede, 613641 00IbUION UHMEPEC K UCCIe006AHUAM, HANPABTIEHHIM HA AHATU3
U CMACYEHUE CEA3AHHBIX C IMUM IKOJI02UUECKUX PUCKO8, 4 MAKICe CHENnEeHU IM020 3A2PAIHEHUSL.
OcHOBHBIMU UCMOYHUKAMU aApMaye6mUYecKUX 3azpA3HUmMenell ¢ NPUPOOHBIX 03€Pax U PeKax sa6-
JAIOMCA CMOYHbBLE 600bl KTUHUK, CHIOUHbBIE 600bl (PAPMAUEEMUUECKOZ0 NPOUIEOOCEA U CIOYHbLE
800bl HCUTIBIX 00MO8, 3A2PAZHEHHbIE IKCKpemenmamu nompedumeneii nekapcme. Ilpu ouyenke co-
CMOAHUA PeK (apmayesmuyecKkue 3azpa3Humenu Ovliu onpeoeneHsl KaK 00HU U3 HOGbIX 3a2PA3IHU-
meneii. IlIpedvidyujue uccnedosanus noKa3aiu, Ymo RPUMECAMU 6 WUPOKO UCROIb3YeMbIX (apma-
YesmuUeCcKuUX npenapamax A61AI0MCA HeCmepPoOUOHble NPOMUBOEOCRAIUMEbHbLE RPENAPANbl, AH-
muoduomuKu, GHMUpemposupycHole U RPOMuopaxosvie npenapamout. Kpome mozo, smom 0630p oe-
MOHCmpUpyem UCnONb306aAHUE AHATUIMUYECKUX MEM 00086 015 U3YUeHU IMUX 3azpA3HUmenell 6 pa3-
JUYHBIX 6UOAX PeUHOU 600bl. H3-3a ux upe3suiuailHo HU3KUX KOHYEeHmMpPAyuii 6 600HOU cpede (npu-
MepHO 6 ouanazone om H/1 00 2/11) 01 u0eHmupuKayuu U KOJIUYECMEEHHO20 ONPedeeHUs IMUX
HPOOYKmMOG HEOOXOOUMO NPUMEHAND MEMOOUKY BbICOKOUYECHEGUMEIbHO20 U CE/IEKMUBHO20 MHOZ0-
KOMHNOHEHMHO20 00HOBPEMEHHO20 AHAU3A. IMOM AHATUMUYECKUTL Memo0 obecneuusaem 2udKue
U HAaodedl CHble CPeOCHmea 0N 6blAGNEHUA U OUEHKU hapmayeemuyecKux 3azpasnumeneii 6 npooax
PEUHOIL 600bl HymeM COUemanus meepoogaznoil IKCMPAKUUU U MACC-CHEKMPOMEMPULECKUX MEMO-
006. SPE-LC/MS/MS — ocroenoii memoo ouenku yposHs 3azpa3HeHus.
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Recent reports of new pollution issues brought on by the presence of medications in the
aquatic environment have sparked a great deal of interest in studies aiming at analyzing and miti-
gating the associated environmental risks, as well as the extent of this contamination. The main
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sources of pharmaceutical contaminants in natural lakes and rivers include clinic sewage, phar-
maceutical production wastewater, and sewage from residences that have been contaminated by
drug users' excretions. In evaluating the health of rivers, pharmaceutical pollutants have been
identified as one of the emerging pollutants. The previous studies showed that the contaminants in
pharmaceuticals that are widely used are non-steroidal anti-inflammatory drugs, antibiotics, an-
tiretrovirals, and anticancer drugs. Additionally, this review demonstrated the use of analytical
techniques to examine these contaminants in various kinds of River water. Due to their extremely
low concentrations in the agueous environment (about in the range of ng/L to g/L), it is necessary
to apply a technique for highly sensitive and selective multicomponent simultaneous analysis to
identify and quantify these products. This analytical technique provides a flexible and reliable
means to identify and evaluate pharmaceutical contaminants in river water samples by combining
solid phase extraction and hyphenated mass spectrometric techniques. SPE-LC/MS/MS is the main
method for estimating the level of pollution.
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INTRODUCTION

Wastewater pollution adversely affects com-
munity water sources and may have detrimental effects
on health [1]. Emerging pollutants (EPs), as defined by
the United States Geological Survey, are those that can
infiltrate the environment and have identified or sus-
pected negative effects on the natural world, toxicol-
ogy, and health of humans. Even though these toxins
have been extensively spread throughout the environ-
ment, they are now being identified thanks to the ad-
vancement of modern detection techniques. New
sources of emerging pollutants may be produced by by
modifications to the usage and. EPs are divided into six
main kinds according to their origins and several physio-
chemical traits: Endocrine-disrupting  substances
(EDCs), pharmaceutical pollutants (PPs), persistent or-
ganic pollutants (POPs), artificial sweeteners (ASs),
and microplastics (MPs) are just examples of the con-
taminants found in products for personal use. Numer-
ous classes of EPs are being consumed at a signifi-
cantly higher rate as a result of population and eco-
nomic growth. Over 700 EPs have previously been
found in the environment of water in Europe [2].

A challenge for the environment has been the
detection of EPs in several surface water bodies world-
wide [3-7] including pharmaceutical and personal care
products, polycyclic aromatic hydrocarbons [8], and
phenols [9]. Though their low concentrations have
harmed routine monitoring of them, it is now being
done seriously since data suggests that these contami-
nants affect the biological function of rivers and other
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bodies of water [10, 11]. In addition, another main en-
vironmental problem is metals in soils from waste-
water [12].

Nowadays, pharmaceuticals and pharmaceuti-
cally active substances are classified as new environ-
mental pollutants as a result of their inevitable increase
in consumption and expanding presence in a range of
environmental compartments [13]. Pharmaceuticals
and personal care products (PPCPs) are acknowledged
as environmental toxins of worldwide significance due
to their biological activity, their prevalence in global
ecosystems [14], and more recently, their role as driv-
ers of global change [15]. For pharmaceutical products
to be more stable and to ascertain whether the degrada-
tion products and contaminants are harmful, more in-
formation about the structure of the degradation pro-
cess is needed [16]. PPs are substances utilized in both
agricultural products and human health care to support
the well-being or growth of farm animals. The produc-
tion and use of pharmaceutical items have both in-
creased substantially in recent decades as medicine has
advanced. A few hundred tons of chemicals are manu-
factured annually, and about 3.000 are required to pre-
pare medicines [17, 18]. The three classes of pharma-
ceuticals that are used the most frequently worldwide
are analgesics, antibiotics, and anti-inflammatory treat-
ments. On farms all around the world. These medica-
tions are widely used in the medical field for the pre-
vention and treatment of animal diseases as well as to
boost financial rewards in industrial the production of
livestock. Every day, people use a range of different
medications for their health [19-22].
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Medication is eliminated from the body as ac-
tive ingredients, or metabolites, through the urine and
feces after intake [23]. On the other hand, these medi-
cines are also present in freshwater ecosystems and
marine settings due to wastewater effluents created un-
der regenerate circumstances [24-30]. The primary
problem is that some of these emerging contaminants
(ECs) are challenging to remove using traditional treat-
ment facilities; therefore, new approaches are being
sought after and investigated to entirely eradicate them
[31]. Studying pharmaceuticals is essential because of
the dramatic increase in pharmaceutical usage world-
wide and the associated environmental implications,
particularly their. Pharmaceutical compounds are cate-
gorized as ECs in the settings of wastewater and bio-
logical degradation attributed to the lack of standards
for their environmental discharge and impacts on the
environment [32-35]. Marketing of some medications
without a prescription from a doctor or prior registra-
tion, so are commonly consumed globally, indicating
that they spread over the environment [36].

Pharmaceutical substances enter bodies of wa-
ter, on both surfaces. There were numerous sources of
surface and groundwater. Urban wastewater is the first
of these, and it contains a significant amount of medi-
cations in human feces, as well as insufficient drug dis-
posal caused by the failure to have little management
control. Another significant source of pharmaceuticals
is livestock and agricultural waste, particularly the lat-
ter, as animals are kept in vast farms for intensive live-
stock, are frequently given feed supplements that con-
tain medicines, and excreta is frequently utilized as soil
additives in agriculture, reaching the water table
through leaching [37, 38]. Despite stringent monitor-
ing of pharmaceutical products in Europe and the
United States, substantial amounts of medicines have
been identified in discharges from companies in Asia,
Europe, and America, making pharmaceutical sector
effluents another significant source [39-44].

Pharmaceutical wastewater contents change
on a weekly and daily basis as a result of commuter,
usage, and activity patterns [45-50]. Pharmaceutical
concentrations in rivers may be extremely dynamic
when leaking infrastructure is the main source of the
drugs because of changes in loading and stream flow
over time [51]. Wastewater treatment plants can
greatly minimize the temporally unpredictable nature
of human use and discharge patterns [50]. Although the
treated effluent is often a steady point source, changes
in stream flow and stream attenuation could eventually
lead to changes in the concentrations of downstream
pharmaceuticals [52-54]. Since leaks have the potential

to transport temporal trends in human usage to receiv-
ing waterways, it may expect a lot more unpredictabil-
ity if sewage infrastructure leaks are the main source
of pharmaceuticals entering waterways. The amount of
pollution that enters and affects recipient water bodies
is determined by time-integrated mass, often known as
a load. Load is essential for calculating the quantity
transported to the seas downwind and the possible
buildup in the sediments. Understanding pharmaceuti-
cal concentrations and their temporal fluctuation is cru-
cial for assessing these levels, as well as the hazards to
aquatic life [55, 56].

According to several studies that examined the
microbiome of wastewater, hospitals tend to have a lot
of anaerobes that pose a hazard to patients' health, in-
cluding Bifidobacteriales, Bacteroidales, and Clostrid-
iales [57-59]. They also noted that medical facility
wastewater, in comparison to wastewater from other
sources, contains bacteria with higher proportional lev-
els of antibacterial and resistance to antibiotics genes
[57]. A considerable overhaul of current water treat-
ment techniques is necessary in order to comply with
the principles of sustainable development and "green"
technologies [60].

LITERATURE REVIEW

Commonly used groups of pharmaceutical
pollutants

Non-steroidal
(NSAIDs)

With a variety of chemical compositions and
related therapeutic effects, non-steroidal anti-inflam-
matory medicines (NSAIDs) and analgesics are among
the most significant classes of medical products in the
world, with an estimated yearly output of several hun-
dred tons [61]. Humans require significant doses of
anti-inflammatory drugs when prescribed, but far
larger quantities are often sold over-the-counter [62].
In the field of veterinary medicine, antibiotics, and
NSAIDs are regularly used to treat conditions such as
pain, inflammation, fever, osteoarthritis, arthritic ill-
ness, and stress [63, 64]. Unfortunately, these two clas-
ses of drugs have a variety of detrimental consequences
on patients, including asthma, exceedingly rare allergic
reactions, ulcers, gastrointestinal problems, and renal
failure with an increased risk of postoperative bleeding
[65-68]. These drug concentrations are currently being
checked in effluents all over the world, and various
studies have shown that both NSAIDs and analgesics
are frequently found in water sources [69, 70]. The
most important NSAIDs in various environmental
samples were measured using a variety of methodolo-
gies because drug contamination and environmental
risk assessment are widespread issues [71].

anti-inflammatory drugs
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NSAIDs are often used throughout the world
and can cure joint inflammation, fever, and muscle
pain in both people and animals [72]. The highest con-
centration of ibuprofen (2.32 pg/L) in natural water sys-
tems has been recorded in India, Ketoprofen (1.07 ug/L)
and acetaminophen (1.56 pg/L) were found in the
Ganga River close to Sahibganj, Bihar [73, 74]. The
contaminants found in river water have been deter-
mined to be posing an intermediate to high ecological
risk [75]. In Cuernavaca (Mexico), samples taken at
different times over the years have revealed high concen-
trations of diclofenac (258-1.398 ng/L) and naproxen
(732-8.889 ng/L), as well as influent and wastewater
froma WWTP, are found in the Apatalco River surface
waters. [76]. Additionally, drugs such as d diclofenac
(10.221 ng/L maximum concentration reported) were
found in wastewater from the Red Sea (Saudi Arabia)
[77]. Various quantities of diclofenac (19.4 ng/L) and
acetaminophen (17.4-34.6 ng/L) were found in Brazil-
ian surface and bottom water samples collected from
Santos Bay [78]. Because of increased tourism, the
same drugs were also found in surface water in the
northern Antarctic Peninsula region, with acetamino-
phen and diclofenac concentrations of 48.74 and 15.09,
ng/L, respectively [79].

Antibiotics

Antibiotics, which have been used to stop or
reduce the growth of bacteria, are the most potent med-
ication now on the market [80]. Antibiotics work in a
variety of ways, one of which is by inhibiting the for-
mation of peptidoglycan and nucleic acids, which has
a detrimental effect on cell division [81]. Aquatic or-
ganisms are chronically exposed to antibiotics as a re-
sult of their constant introduction into the environment
[82, 83]. They are hazardous to organisms and have a
synergistic impact when combined with other medica-
tions and/or xenobiotic substances since they function
in extremely low quantities [84]. Antibiotics hurt algae
and aquatic plants [85, 86]. Due to their ability to ob-
struct photosystem II's electron chain and enhance ox-
idative stress, several of them have been reported to be
photosynthesis inhibitors [87]. The primary issue is
that antimicrobial resistance genes (ARGS), which are
genes that provide bacterial antibiotic resistance and
can spread through horizontal gene transfer are present
in the environment and are consequently regarded as
contaminants [88, 89]. Despite research showing that
the plasmids that conjugate might increase the levels of
ARGs in lakes and rivers down of wastewater treat-
ment facilities, and integrons as wastewater that have
been treated still contain considerably fewer ARGs
than untreated wastewater regardless of this [90-94].
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Based on the type of reservoir, different quan-
tities of antibiotics are used overall; for instance, they
may range from 0.0013 to 0.0125 pg/mL in wastewater,
from 0.0005 to 0.0214 pg/mL in drinking water, and
from 0.0003 to 0.0039 pg/mL in river water [95-97].
Antibiotic resistance among microbes to antimicrobi-
als is projected to significantly increase human mor-
bidity and mortality shortly [98]. Several rivers exist
around the world, including those in Spain, Italy, South
Korea, Taiwan, France, the United States, Sweden, and
China have been observed to contain antibiotics [99-102].

Antiretrovirals

Antiretrovirals are commonly found in waste-
water, but they are not as closely monitored as other
drugs [103-107]. According to the studies by Hawkins
[108], Ncube et al. [109], and Mlunguza et al. [110],
these drugs offer significant ecotoxicological dangers
to human health by entering drinking water sources af-
ter being treated with wastewater in WWTPs. The big-
gest worry at the moment is that exposure to water pol-
luted with these medications could result in the devel-
opment of resistant HIV strains in the body [109, 111].

Anticancer drugs

Annual cancer cases are predicted. In excess of
20 million in the ensuing decades, which would cause
the usage of anticancer drugs to increase exponentially
and their consequent discharge into wastewater [112].
The majority of these substances are insufficiently ab-
sorbed and digested by the human body, which results
in their excretion in urine and feces. The most often
used anti-cancer medications include, among others,
cyclophosphamide, tamoxifen, ifosfamide, and metho-
trexate. Surface water, influents and effluents from
WWTPs, and hospital effluents have all had these med-
icines found in them. According to the study by Nas-
sour et al., the concentrations of cyclophosphamide,
ifosfamide, methotrexate, and tamoxifen that were de-
tected ranged from 0.05 to 22.100 ng/L, 0.14 to
86.200 ng/L, and 0.01 to 740 ng/L, respectively [113].
These drugs have been found in water masses in sev-
eral investigations, demonstrating that current water
treatment systems cannot break them down [114, 115].
To lessen the negative environmental impact of medi-
cations, regulations for their handling and preservation
have been developed by a number of international bod-
ies [116]. One of the primary issues is that these medi-
cations could experience biomagnification [117].

Application of analytical techniques in the
pharmaceutical analysis of Rivers

In the study by Madureira and co-workers
[118], solid-phase extraction (SPE) and high-perfor-
mance liquid chromatography with diode array detec-
tion (HPLC-DAD) were used to determine six diverse
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pharmaceuticals in estuarine surface waters. The cali-
bration curves' linearity consistently revealed a corre-
lation of better than 0.99, and the validation parame-
ters showed that this technique had good specificity
(> 99%) for all substances tested. Recovery rates for
the majority of the target compounds were more than
70%, and the limits of detection (LOD) were in the
ng/L range. This method can therefore be used to effi-
ciently filter pharmaceuticals in contaminated estua-
rine areas, it can be concluded.

Liquid chromatography (LC), a UV-Vis diode
array detector, and a Thermo Scientific C18 (250 mm x
x 2.1 mm, i.d.: 5 m) column in negative ion mode were
used to evaluate some pharmaceuticals in surface wa-
ter. Using a 0.1% mobile phase, they were taken out of
the column. For mass spectrometry, time of flight
(TOF) equipment was utilized. For the linearity range
of 5-500 ng/mL, all compounds have a determination
coefficient (R2) > 0.99. The LOD in the river water
varied from 65 to 136 ng/L, while the recovery was be-
tween 45 and 111.2% [119].

Fick and co-authors have studied how environ-
mental exposure to active pharmaceutical compounds
occurs in a crucial area for the production of bulk med-
ications. At an effluent treatment plant, samples of wa-
ter were collected that is shared and located close to
Hyderabad, India. This facility receives process water
from roughly 90 bulk pharmaceutical manufacturers.
When all of the wells were analyzed using the LC-MS
method, the following drugs were all detected in sig-
nificant amounts: citalopram, cetirizine, enoxacin,
ciprofloxacin, and terbinafine. Antibiotic resistance is
becoming a serious concern, and producers and regu-
latory organizations confront a challenging task in their
efforts to address the issue [120].

In Turkey's Ceyhan River, the presence of
91 pharmaceutically active chemicals from several
drug classes-including painkillers, antimicrobials, car-
diovascular medications, hypolipidemic medications,
CNS medications, and stimulants was examined. Phar-
maceutically active substances were inspected period-
ically between September 2013 and August 2014 at
9 stations. SPE was employed for the pharmaceuti-
cally active molecule analysis, and liquid chromatog-
raphy-tandem mass spectrometry (LC-MS/MS) was
used to assess the results. The two pharmaceuticals that
were most frequently found in the river water were car-
bamazepine and lidocaine [121].

It was simple, quick, and affordable to identify
38 PPCPs, including 19 antibiotics, in surface water
samples using lyophilization and LC-MS/MS. The vol-
ume of the water sample, its components, and the ex-

10

traction solvent were all altered one at a time. After ly-
ophilizing 80 mL of water samples to concentrate the
analytes, 2 mL of each of acetonitrile, acetone, and ul-
trapure water were employed as the eluents to success-
fully elute the analytes. The LOD was present in the
range of 0.02 ng/ L to 0.17 mg/L. The range for 30 dif-
ferent analytes was 40.0% to 124.4%, whereas the recov-
ery rate for sulfaguanidine was 40.0%. (flumequine). All
of the analytes exhibited relative standard deviations
under 21% besides ciprofloxacin (29%) in this study.
water, especially river surfaces [122].

The four biggest hydrographic basins' princi-
pal rivers, as well as a commercial water treatment fa-
cility in Curitiba, Brazil, were evaluated for the pres-
ence of 25 pharmaceuticals using a multiclass analyti-
cal technique that was developed and validated. The
medicines were evaluated using SPE-HPLC-MS/MS.
10-100 ng/L and 20-200 ng/L, respectively, were the
LOD and LOQ values. Sulfamethoxazole has the high-
est concentration of any antibiotic. Antibiotics, psychi-
atric drugs, anti-inflammatories, analgesics, antiretro-
virals, and diabetes medicines were additionally often
discovered and measured. The study's findings show
that humans have had a significant impact on the
Iguagu basin, which is primarily supported by the ar-
ea's high proportion of residential rubbish [123].

The HPLC approach with DAD detection was
suggested for the simultaneous study of 15 pharmaceu-
ticals from different therapeutic classes in surface wa-
ter and wastewater. Dexamethasone and prednisolone,
two corticosteroids, were among the medications,
along with NSAIDs such as paracetamol, metamizole,
aspirin, salicylic acid, diclofenac, and naproxen. The
pre-concentration of water samples using solid-phase
extraction (SPE) columns from Oasis HLB, NEXUS,
and Bond Elut ENV was examined. Water samples that
had been spiked with an amount of 0.2 g/L were used
to assess the validity of each method. The highest rate
of recovery was generated by the Oasis HLB column.
Various HPLC columns were examined to achieve the
best separations in the shortest period. The recom-
mended method can be used as a quick and inexpensive
analytical instrument for screening. It was used to ex-
amine water samples, especially from rivers. The opti-
mistic findings should be supported by MS methods,
though [124].

For the majority of analytes, high recoveries
were obtained for extraction from both water and sed-
iment samples using LC/MS-MS. Low limits of detec-
tion were attained for all substances under investiga-
tion in both the silt (1-3 ng/g) and the water sample
(1-5 ng/L). Environmental samples contained samples
that contained 60% of the target chemicals. Pesticides
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dimethoate and atrazine were the most commonly ob-
served analytes in river sediments [125].

With the help of SPE and GC-MS, Togola and
colleagues have developed an analytical technique for
identifying medicinal chemicals in various aqueous
samples (wastewater and surface water). Depending on
the type of chemical, samples were filtered, extracted,
and concentrated using C18 or HLB cartridges. To en-
sure the preservation of the medicinal ingredient, sample
storage conditions were assessed and adjusted while en-
vironmental sampling circumstances were taken into
account. For the bulk of the medicines studied, LOD
ranged from 0.4 to 2.5 ng/L depending on the chemi-
cal, with recovery between 53 and 99% and variability
under 15% throughout the entire operation [126].

A variety of analytes, including small pharma-
ceutical compounds and polymers, have been investi-
gated using ionization mass methods [127]. The liquid
chromatography/electrospray ionization/tandem mass
spectrometry (LC-ES/MS-MS) technology was devel-
oped, validated, and utilized by Hao and colleagues to
investigate pharmaceutical inputs in the Grand River
watershed, Ontario, Canada. 27 antibiotics and neutral
medicines were extracted from aqueous ambient sam-
ples and evaluated by LC/MS-MS. The method's re-
coveries ranged from 51 to 130%, and its detection limits
for the targeted substances were 20 to 1,400 ng/L [128].

LC-MS spectroscopy was used to investigate
weekly samples from a network of urban streams in
Baltimore, Maryland, for the presence of 92 pharma-
ceuticals because the network lacked wastewater treat-
ment effluents. 37 distinct chemicals were present in
the network, and streams with higher population den-
sities had higher chemical concentrations. It shows that
between 0.05 and 42% of the medications people in
this watershed use are discharged to surface water-
ways. Varying substances offer diverse channels with
different weights. These findings highlight the signifi-
cance of creating, preserving, and enhancing sewage
infrastructure to safeguard water resources from phar-
maceutical contamination [51].

The influence of these pharmaceuticals on sur-
face rivers receiving treated wastewater is the main
subject of this study by Torres-Palma and co-workers,
which is the first to look at the removal of pharmaceu-
tical drugs in wastewater treatment plants. To do this,
samples from surface water at the junction of the rivers
in Juliaca (Peruvian Highlands), Cusco, Puno, and
Lima (Peruvian Coast) were examined. In this investi-
gation, a total of 38 target drugs were identified using
LC-MS/MS. Surface water and MWWTPs, respec-
tively, contained 60% and 75% of the target medica-
tions. Acetaminophen, which was found in all samples
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of treated wastewater in the Puno department and had
average amounts of more than 100 g/ L, was the phar-
maceutical with the greatest concentration. Data from
this study indicated that the MWWTP Cusco was more
effective than the MWWTP Lima in terms of removing
drugs. The quantities of some medicines (about 50% of
the chemicals examined) in treated wastewater, how-
ever, were either equal to or greater than those in influ-
ent wastewater. The Risk quotient, which was deter-
mined from the concentration information in the sam-
ples was used to evaluate the environmental and eco-
logical risks of medicines. Our results demonstrated
that the aquatic ecosystem was exposed to a high envi-
ronmental risk (RQ 1) from the analgesic acetamino-
phen and three antibiotics (clindamycin, ciprofloxacin,
and clarithromycin). Except for norfloxacin, all antibi-
otics as well as the painkillers acetaminophen and di-
clofenac posed a high environmental risk (RQ 1) in the
river. It may be concluded that the wastewater treat-
ment techniques employed in the country's largest cit-
ies are insufficiently successful in eliminating pharma-
ceuticals based on information that was uncovered.
MWWTPs should therefore include additional treat-
ment techniques for the more efficient removal of these
chemical compounds [129].

Wan-Ching Lin and colleagues have modified
the procedure for analyzing particular pharmaceutical
compounds in water samples. Investigations were con-
ducted on various solid-phase extraction cartridges.
The analytes were derivatized in real-time in the injec-
tion port of the GC-MS, which enabled the identifica-
tion and quantitative analysis of the analytes. The in-
jection volume was considerable (10 pl), and TBA
salts were utilized. As the quantitation ions, a mix of
molecular ions and a few identifying ions were used to
obtain the best detection sensitivity and specificity. In
samples of 500 ml tap water. The range of these sub-
stances' quantitation limits was 1.0 to 8.0 ng/L. Be-
tween 50 and 108% of these residues were recovered
from spiked water samples, while the RSD ranged from
1 to 10%. The specified analytes were identified in river
water and wastewater treatment plant effluent samples
in concentrations ranging from 30 to 420 ng/L [130].

Spectrophotometric methods can be useful for
identifying environmental samples because they are
simple and affordable [131]. It is shown how time-do-
main NMR (TD-NMR) analysis can be used to detect
the water content of medicinal components. In the ini-
tial stages of the investigation, samples of a variety of
disintegrants, including croscarmellose sodium, maize
starch, low-substituted hydroxypropy! cellulose, and
crospovidone, were used. These disintegrants had ad-
ditional water in predefined amounts (between 0 and

11
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30% of the total weight). Partial least squares (PLS)
regression was used to analyze the samples' T2 relaxa-
tion curves after they had been collected by TD-NMR
measurements. The investigation showed that trustwor-
thy and precise PLS models were developed, allowing
precise estimation of the samples’ water content [132].

CONCLUSION

Pharmaceutical contamination in aquatic envi-
ronments is a major concern, with sewage from pro-
duction facilities, hospitals, and homes being the main
sources. Studies are being conducted to reduce this
contamination. The current review has studied the lit-
erature on using extremely sensitive and highly selec-
tive analytical technology (hyphenated chromatog-
raphy-mass-techniques) to identify pharmaceuticals
that are causing new environmental contamination
problems. SPE-LC/MS/MS is the main method for fig-
uring out the extent of this contamination. This review
also defined and arranged the information gleaned
from published analytical instances and discussed the
future potential of this environmental analysis tech-
nique. According to recent studies using this methodol-
ogy, these pharmaceutical pollutants include NSAIDs
drugs, antibiotics, antiretrovirals, and anticancer med-
ications that may hasten the growth of bacteria that are
resistant to antibiotics in the aquatic environment.

The authors declare the absence a conflict of
interest warranting disclosure in this article.
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