V 68 (2) ChemChemTech

2025

DOI: 10.6060/ivkkt.20256802.7072

УДК: 544.478-03:544.653.1

ВЛИЯНИЕ ОТНОШЕНИЯ Fe:W В ТЕТРАБОРАТНОМ ЭЛЕКТРОЛИТЕ НА ХАРАКТЕРИСТИКИ ОКСИДНЫХ СЛОЕВ НА ТИТАНЕ, ФОРМИРУЕМЫХ МЕТОДОМ ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ

Ю.Б. Будникова, М.С. Васильева, И.В. Лукиянчук

Юлия Борисовна Будникова (ORCID 0000-0002-8716-8986)*, Марина Сергеевна Васильева (ORCID 0000-0002-6716-1373)

Институт химии ДВО ВАН, пр. 100 лет Владивостока, 159, Владивосток, Российская Федерация, 690022 Дальневосточный федеральный университет, пос. Аякс, 10, Владивосток, Российская Федерация, 690022 E-mail: budnikova.iub@mail.ru*, vasileva.ms@dvfu.ru

Ирина Викторовна Лукиянчук (ORCID 0000-0003-1680-4882)

Институт химии ДВО ВАН, пр. 100 лет Владивостока, 159, Владивосток, Российская Федерация, 690022 E-mail: lukiyanchuk@ich.dvo.ru

Изучено влияние концентрации вольфрамата натрия в тетраборатном электролите, содержащем хелатные комплексы Fe(III) с ЭДТА, на состав, оптические и фотокаталитические свойства пленочных композитов Ti/TiO2-WO3-Fe2(WO4)3, сформированных одностадийным методом плазменно-электролитического оксидирования (ПЭО). Проведенные исследования показали, что добавки вольфрамата натрия способствуют получению качественных и сплошных ПЭО-покрытий. Согласно данным рентгенофазового анализа (РФА), во всех сформированных покрытиях присутствует оксид вольфрама WO_3 в кубической модификации и $Fe_2(WO_4)_3$ в моноклинной модификации. Изменение мольного отношения Fe:W в электролите от 1:1 до 1:3 за счет увеличения концентрации Na_2WO_4 приводит к увеличению толщины от 24 до 33 мкм, уменьшению содержания железа от 10 до 4 ат.%, но практически не влияет на содержание вольфрама в оксидных слоях. Согласно спектрам диффузионного отражения, покрытия без железа (TiO₂-WO₃) поглощают только УФ свет. Наличие железа в составе покрытий приводит к красному смещению спектра, свидетельствуя об их способности поглощать излучение в видимой области спектра. Это подтверждают значения ширины запрещенной зоны $E_{\rm g}$, определенные методом Тауца для прямых разрешенных переходов. С уменьшением содержания железа в образцах $E_{\rm g}$ возрастает от 2,01 до 2,68 эВ. Для образцов, полученных в тетраборатно-вольфраматном электролите без добавления комплексов железа, E_e =3,0 эВ. Все полученные композиты проявляют практически одинаковую фотокаталитическую активность в деградации метилового оранжевого (10 мг/л, рН 6,8) в присутствии пероксида водорода ($C(H_2O_2) = 10$ ммоль/л) под действием У Φ и видимого света.

Ключевые слова: плазменно-электролитическое оксидирование, титан, триклинная и кубическая модификации WO_3 , $Fe_2(WO_4)_3$, фотокатализ, фото-Фентон процесс

Для цитирования:

Будникова Ю.Б., Васильева М.С., Лукиянчук И.В. Влияние отношения Fe:W в тетраборатном электролите на характеристики оксидных слоев на титане, формируемых методом плазменно-электролитического оксидирования. *Изв. вузов. Химия и хим. технология.* 2025. Т. 68. Вып. 1. С. 79–87. DOI: 10.6060/ivkkt.20256802.7072.

For citation:

Budnikova Yu.B., Vasilyeva M.S., Lukiyanchuk I.V. 2 influence of Fe:W ratio in tetraborate electrolyte on characteristics of oxide layers formed on titanium by plasma electrolytic oxidation. *ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]*. 2025. V. 68. N 1. P. 79–87. DOI: 10.6060/ivkkt.20256802.7072.

2 INFLUENCE OF Fe:W RATIO IN TETRABORATE ELECTROLYTE ON CHARACTERISTICS OF OXIDE LAYERS FORMED ON TITANIUM BY PLASMA ELECTROLYTIC OXIDATION

Yu.B. Budnikova, M.S. Vasilyeva, I.V. Lukiyanchuk

Yulia B. Budnikova (ORCID 0000-0002-8716-8986)*, Marina S. Vasilyeva (ORCID 0000-0002-6716-1373)

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoka ave., 159, Vladivostok, 690022, Russia

Far Eastern Federal University, pos. Ajax, 10, Vladivostok, 690022, Russia

E-mail: budnikova.iub@mail.ru*, vasileva.ms@dvfu.ru

Irina V. Lukiyanchuk (ORCID 0000-0003-1680-4882)

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoka ave., 159,

Vladivostok, 690022, Russia

E-mail: lukiyanchuk@ich.dvo.ru

The effect of the concentration of sodium tungstate in a tetraborate electrolyte containing chelate complexes of Fe (III) with EDTA on the composition, optical and photocatalytic properties of Ti/TiO₂-WO₃-Fe₂(WO₄)₃ film composites formed by a one-stage method of plasma-electrolytic oxidation was studied. The research showed that sodium tungstate additives contribute to the production of high-quality and continuous PEO coatings. According to X-ray Diffraction Analysis (XRD), all formed coatings contain tungsten oxide WO₃ in the cubic modification and $Fe_2(WO_4)_3$ in the monoclinic modification. A change in the Fe:W molar ratio from 1:1 to 1:3 in the electrolyte due to an increase in the concentration of Na₂WO₄ leads to an increase in the thickness from 24 to 33 µm, a decrease in the iron concentration from 10 to 4 at.%, but has almost no effect on the tungsten concentration in the oxide layers. According to diffusion reflectance spectra, coatings without iron (TiO2-WO3) absorb only UV light. The presence of iron in coatings leads to a red shift of the spectrum, indicating their ability to absorb visible radiation. This is confirmed by the values of the band gap E_{ε} determined by the Tauc method for direct allowed transitions. As the iron content in the samples decreases, Eg increases from 2.01 to 2.68 eV. For samples obtained in a tetraborate-tungstate electrolyte without iron complexes, E_g=3.0 eV. All obtained composites exhibit almost the same photocatalytic activity in the degradation of methyl orange ((10 mg/L, pH 6.8) in the presence of hydrogen peroxide $(C(H_2O_2) = 10 \text{ mmol/L})$ under UV and visible light.

Keywords: plasma electrolytic oxidation, titanium, WO₃, Fe₂(WO₄)₃, photocatalysis, photo-Fenton process

ВВЕДЕНИЕ

В последние годы для очистки водных объектов от органических загрязнителей наиболее перспективными являются эффективные окислительные процессы (Advanced Oxidation Processes – AOPs), в том числе Фентон- и Фентон-подобные процессы, а также гетерогенные фотокаталитические процессы, которые сопровождаются образованием высокоактивных радикальных частиц [1, 2].

В гетерогенном фотокатализе в качестве катализаторов широко используют полупроводниковые материалы [3, 4]. Особое внимание привлекают вольфраматы переходных металлов, которые способны работать как в ультрафиолетовом, так и в видимом свете [5-8]. Однако широкое практическое использование вольфраматов металлов огра-

ничено высокой скоростью рекомбинации фотогенерированных в них дырок и электронов, что снижает эффективность фотокаталитического процесса. Одним из решений данной проблемы является совмещение гетерогенного фотокатализа с Фентон-процессом [9, 10]. В этом отношении перспективным материалом является вольфрамат железа – полупроводник с низкой шириной запрещенной зоны. С одной стороны, под воздействием света в нем могут образовываться дырки и электроны, с другой стороны, катионы железа, присутствующие в его составе, способны участвовать в Фентон-процессе [11, 12].

Материалы на основе вольфраматов железа в большинстве случаев разрабатываются в виде порошков, что затрудняет их широкое практическое применение, поскольку в этом случае значительны

затраты на сепарацию порошка после реакции. Пленочные катализаторы в этом отношении имеют значительное преимущество перед порошковыми [13, 14].

Одним из технологически простых и дешевых способов получения сложных композитов является метод плазменно-электролитического оксидирования (ПЭО) [15]. Суть метода — электрохимическое формирование оксидных слоев на вентильных металлах в условиях действия искровых или микродуговых электрических разрядов на границе раздела металл/электролит [16].

Ранее было показано, что для формирования покрытий, содержащих соединения переходных металлов, эффективно использование гомогенных электролитов с добавлением хелатных комплексов металла и ЭДТА (М-ЭДТА) [7,8,17]. Так, вольфраматы переходных металлов были сформированы одностадийным методом ПЭО в электролитах, содержащих вольфрамат натрия, М-ЭДТА (М = Со, Сu, Ni) и фосфат натрия [8]. Присутствие фосфата в электролите способствовало образованию аморфных покрытий, кристаллизация вольфраматов металлов и оксидов вольфрама происходила только в результате высокотемпературного отжига.

Авторы [7] синтезировали сложные железосодержащие гетероструктуры методом ПЭО в гомогенных электролитах, представляющих собой щелочные водные растворы с добавлением вольфрамата натрия и комплексных ионов железа. Однако результаты данной работы показали низкую эффективность фотокаталитического разложения метилового оранжевого (МО) на таких структурах: в кислой среде в присутствии пероксида водорода степень деградации МО достигала лишь 30%. Кроме того, в данной работе не изучали влияние мольного отношения Fe-ЭДТА/WO₄²⁻ (или Fe:W) в электролите на состав и свойства покрытий. В то же время авторы [18] показали, что мольное отношение Mn/W существенно сказывается на морфологии и фазовом составе покрытий, которые, в свою очередь, могут влиять на оптические и фотокаталитические характеристики образцов.

Цель данной работы — изучить влияние отношения Fe:W в электролите на основе тетрабората натрия на морфологию, состав, оптические и фотокаталитические свойства покрытий, формируемых методом ПЭО на титане. Отметим, что боратный электролит способствует разрыхлению решетки диоксида титана и образованию рутила в составе ПЭО-покрытий [19].

МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы для плазменно-электролитического оксидирования изготавливали из листового титана марки BT1-0 в виде пластинок размером $2,0\times2,0\times0,05~{\rm cm}^3$. Подготовку образцов проводили аналогично [7].

Электролитами для ПЭО-обработки титана служили водные растворы, содержащие 0,1 М $Na_2B_4O_7 + 0.05 \text{ M } Na_2H_2\gamma (\gamma - [C_2H_4N_2(CH_2COO)_4]^{4-})$ + 0.05 M FeSO₄(NH₄)₂SO₄, в которые дополнительно вводили различные концентрации Na₂WO₄ (0, 0.05, 0.1 или 0.15 моль/л). В зависимости от концентрации Na₂WO₄ приготовленные электролиты были обозначены как B/Fe-, B/Fe/1W, B/Fe/2W, и B/Fe/3W (табл. 1). Для сравнения использовали электролит без железа, содержащий 0,1 М Na₂B₄O₇ + 0,05 M Na₂H₂ γ + 0,15 M Na₂WO₄ (электролит В/ЗW). Для приготовления электролитов использовали дистиллированную воду и соответствующие коммерческие реактивы: Na₂B₄O₇·10H₂O (ч), FeSO₄(NH₄)₂SO₄·6H₂O (хч), Na₂WO₄·2H₂O (чда), $C_{10}H_{14}N_2Na_2\cdot 2H_2O$ (чда).

Fe-. W-содержащие и W-содержащие ПЭОпокрытия формировали на титане в течение 10 мин при эффективной плотности анодного тока 0,2 A/cм². В качестве электрохимической ячейки использовали полипропиленовый стакан емкостью 1000 мл с электролитом, в который погружали катод и анод. Источник тока - тиристорный агрегат ТЕР4-100/460Н. Катод – трубчатый змеевик из нержавеющей стали марки X18Н9Т, который за счет охлаждения водопроводной водой одновременно служил холодильником. Анод - обрабатываемый титановый образец. Электролит перемешивали с помощью магнитной мешалки. Температура электролита в ходе ПЭО не превышала 35 °C. После ПЭО-обработки образцы промывали дистиллированной водой и сушили на воздухе при 70 °C.

Толщину сформированных покрытий измеряли с помощью вихретокового толщиномера BT-201 (Россия).

Фазовый состав титановых образцов с Fe-, W-содержащими ПЭО-покрытиями определяли методом рентгенофазового анализа (РФА) на дифрактометре D8 ADVANCE (Германия) в CuK_{α} -излучении по стандартной методике. Идентификация соединений, входящих в состав исследуемых образцов, выполнена в автоматическом режиме поиска "EVA" с использованием банка данных "PDF-2".

Спектры диффузного отражения образцов регистрировали в диапазоне 200-800 нм с помощью спектрофотометра СФ-56 с приставкой для

определения коэффициента диффузного отражения ПДО-6 (ОКБ Спектр, г. Санкт-Петербург) со спектральным разрешением 1 нм. В качестве источника излучения использовали галогенную и дейтериевую лампы. Ширину запрещенной зоны E_g определяли по положению полосы фундаментального поглощения по уравнению Тауца:(1)

$$(hvF(r))^{\frac{1}{n}} = A(hv - E_{g)},$$
 (1)

где h — постоянная Планка, υ — частота колебаний электромагнитных волн, $F(r) = (1-r_{\infty})^2/2r_{\infty}$ — функция Кубелки—Мунка, A — постоянная. Показатель степени n определяется природой межзонных электронных переходов. Величину запрещенной зоны определяли путем аппроксимации линейной части спада кривой Тауца на ось абсцисс, по которой отложена энергия падающих фотонов $h\nu$.

Исследование фотокаталитических свойств сформированных покрытий проводили на примере реакции разложения водного раствора метилового оранжевого (МО) (10 мг/л, pH 6,8, 10 ммоль/л H_2O_2) в условиях видимого и УФ облучения. Объем раствора составлял 25 мл, площадь поверхности облучаемого образца равна 4 см². Оптическую плотность растворов МО до и после реакции определяли с помощью спектрофотометра "ЮНИКО- 200/1201" (США) при λ = 460 нм.

В качестве источников УФ и видимого света использовали облучатель SB-100P (100 Вт, максимум излучения на длине волны 365 нм) и ксеноновую лампу мощностью 35 Вт (35 Вт, спектральный диапазон длин волн 510-680 нм). Рассто-

яние между источником света и поверхностью образца в обоих случаях составляло 5 см.

В каждом эксперименте до начала облучения раствор МО с образцом оставляли в темноте на 30 мин для установления адсорбционно-десорбционного равновесия, после чего измеряли оптическую плотность раствора A_0 . Затем образец облучали в течение 3 ч при перемешивании с помощью магнитной мешалки и вновь определяли оптическую плотность раствора МО после облучения (A).

Степень деградации МО χ вычисляли по формуле:

$$\chi = \frac{(A_0 - A)}{A_0} \cdot 100\% \tag{2}.$$

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Сразу после приготовления железосодержащие электролиты представляли собой истинные растворы ярко-красного цвета. После первого цикла ПЭО-обработки цвет растворов изменялся до темно-красного. Очевидно, это обусловлено нестойкостью комплексов Fe(II)-ЭДТА и их переходом в Fe(III)-ЭДТА [20].

Отметим, что все используемые в работе электролиты – слабощелочные растворы (табл. 1). В щелочной среде вольфрамат-ионы присутствуют в виде анионов WO_4^{2-} [21]. Уменьшение мольного отношения Fe:W практически не влияет на значение pH электролитов, однако приводит к росту электропроводности за счет увеличения концентрации Na^+ и WO_4^{2-} (табл. 1). Таким образом, электролиты для ПЭО содержат вольфрамат-ионы WO_4^{2-} и комплексные ионы Fe(III)-ЭДТА.

Таблица 1
Характеристики электролитов для ПЭО обработки и обозначение полученных образцов
Table 1. Characteristics of electrolytes for PEO treatment and designations of the samples obtained

$N_{\underline{0}}$	Электролит	$C(Na_2WO_4)$, моль/л	pH	<i>æ</i> , мСм/см	U_{ϕ} , B	h, мкм	Обозначение образца	
1	B/Fe/1W	0,05	8,56	28,3	49	24	Ti/Fe:W = 1:1	
2	B/Fe/2W	0,1	8,46	31,5	51	27	Ti/Fe:W = 1:2	
3	B/Fe/3W	0,15	8,45	36,9	52	33	Ti/Fe:W = 1:3	
4	B/3W-	0,15	8,88	30,1	56	16	Ti/W	
5	B/Fe	0	8,52	23,6	40	8	Ti/Fe	

На рис. 1а представлены зависимости напряжения формирования от времени. Все представленные кривые формирования демонстрируют быстрый рост напряжения в течение первой минуты ПЭО-процесса и довольно низкие значения конечного напряжения формирования U_{ϕ} , которые могут быть обусловлены образованием парогазовой прослойки в результате разряда органических анионов [22].

При формировании покрытия в электролите $B/W\gamma^{4-}$ (кривая 4), после кратковременного плато, рост напряжения продолжается и достигает максимума через 6 мин ПЭО-процесса. При оксидировании в железосодержащих электролитах кривые формирования (1-3, 5) имеют схожую форму: спустя 1 мин процесса напряжение достигает максимума, затем незначительно уменьшается и стабилизируется. Наличие вольфрамата натрия в

составе электролитов вызывает рост напряжения на электродах: кривые 1-3 расположены на 10-15 В выше, чем кривая 5. Уменьшение отношения Fe:W в электролите приводит к незначительному увеличению U_{φ} , несмотря на рост электропроводности, и к росту толщины покрытий (табл. 1).

При оксидировании в В/Fе электролите на поверхности титана образуются рыжие островки новой фазы (рис. 1б). Увеличение плотности тока и длительности процесса не изменяет ситуацию. Следовательно, рост покрытий происходит по островковому механизму [23]. При проработке электролита степень заполнения поверхности уменьшается от образца к образцу. В связи с невозможностью получить воспроизводимые покрытия в $B/Fe\gamma^{2-}$ электролите, результаты исследования образцов Ti/Fe в данной работе не приводятся.

Введение Na₂WO₄ в Fe-содержащий электролит приводит к формированию ПЭО-покрытий горчичного цвета, на поверхности которых появляются более темные участки (рис. 1б). Уменьшение отношения Fe:W в электролите (за счет увеличения концентрации вольфрамат-ионов) ведет к снижению интенсивности окраски ПЭО-покрытий и росту числа темных участков на их поверхности. В то же время в B/3W электролите без железа формируются покрытия светлого серо-зеленого цвета.

Рис. 1. Зависимость напряжения на электродах U от времени оксидирования титана t в BWFe-ЭДТA электролитах (а) и фотографии ПЭО-покрытий (б): 1-B/Fe/1W, 2-B/Fe/2W, 3-B/Fe/3W, 4-B/3W, -5-B/Fe

Fig. 1. Dependence of the voltage on the electrodes U on the oxidation time of titanium t in BWFe-EDTA electrolytes (a) and photographs of PEO coatings (δ): 1 – B/Fe/1W, 2 – B/Fe/2W, 3 – B/Fe/3W, 4 – B/3W, 5 – B/Fe

На рис. 2 представлены рентгенограммы сформированных образцов. На рентгенограммах всех Ti/Fe:W покрытий присутствуют пики, отнесенные к кристаллическим фазам WO₃ в кубической модификации и Fe₂(WO₄)₃ в моноклинной модификации. Уменьшение отношения Fe:W в электролите приводит к уменьшению интенсивности пиков, относящихся к вольфрамату железа, и увеличению интенсивности пиков оксида вольфрама. Несмотря на то, что оксид обрабатываемого металла всегда образуется в ходе ПЭО, рефлексы TiO₂ на рентгенограммах Ti/Fe:W образцов не обнаружены. Возможно, диоксид титана в их составе находится в аморфном виде. Отметим, что в составе Ti/W образца обнаружены TiO₂ в модификации анатаз и WO₃ в триклинной сингонии.

Рис. 2. Рентгенограммы образцов: 1 – Ti/Fe:W=1:1, 2 – Ti/Fe:W=1:2, 3 – Ti/Fe:W=1:3, 4 – Ti/W Fig. 2. X-ray patterns of samples: 1 – Ti/Fe:W=1:1, 2 – Ti/Fe:W=1:2, 3 – Ti/Fe:W=1:3, 4 – Ti/W

Согласно данным энергодисперсионного анализа, все сформированные образцы серии Ті/Fe:W содержат углерод, кислород, титан, вольфрам и железо (табл. 2). С уменьшением мольного отношения Fe:W в электролитах содержание железа и кислорода в оксидных слоях падает, содержание углерода и титана растет, при этом содержание вольфрама практически не изменяется. Такое падение концентрации железа при постоянстве концентрации вольфрама в составе ПЭО-покрытий может свидетельствовать об уменьшении доли Fe₂(WO₄)₃ за счет увеличения доли WO₃, что коррелирует с интенсивностью соответствующих пиков на дифрактограммах (рис. 2).

Таблица 2
Элементный состав ПЭО-слоев
Table 2. Elemental composition of PEO layers

Table 2. Elemental composition of 1 EO layers										
Ognoori	Элементный состав (ат. %)									
Образец	С	О	Ti	Fe	W					
Ti/Fe:W = 1:1	16,8	55,2	2,9	10,1	14,8					
Ti/Fe:W = 1:2	18,1	53,6	3,7	5,5	18,9					
Ti/Fe:W = 1:3	21,3	49,5	7,2	3,8	17,9					
Ti/W	13.1	72.6	1.2	_	13.1					

Для оценки оптических свойств сформированных покрытий были получены спектры диффузного отражения, которые использовали для расчета коэффициентов поглощения по функции Кубелки-Мунка (рис. 3а). На спектре поглощения покрытия без железа (кривая 4) присутствует пик при 370 нм и небольшое плечо при 385 нм, что характерно для поглощения TiO₂ и WO₃, соответственно. Появление железа в составе покрытий (кривые 1, 2, 3) приводит к красному смещению спектра. Наибольший сдвиг полосы поглощения наблюдается для покрытия Ti/Fe:W = 1:1 (кривая 1) с наибольшей концентрацией железа (10,1 ат. %). В этом случае пик уширяется, демонстрируя высокую способность данного образца поглощать видимый свет.

Экстраполяция линейного спада кривой $(F(r)hv)^2$ на ось абсцисс (hv) позволяет определить значения E_g для прямых разрешенных переходов (рис. 3б). С уменьшением содержания железа в покрытиях от 10 до 4 ат. % значения E_g увеличиваются от 2,01 до 2,68 эВ. Принимая во внимание многофазность покрытий, такие значения очевидно являются средними для различных компонентов покрытия. Согласно РФА все образцы серии Ti/Fe: W содержат оксид вольфрама и вольфрамат железа. Кроме того, нельзя исключать образование в них Fe_2O_3 [7]. Согласно литературным данным, значения E_g для гематита составляют ~2,0-2,2 эВ [24, 25], для $WO_3 - E_g = 2,87$ эВ [26] и для $Fe_2(WO_4)_3 - E_g = 2,50-2,81$ эВ [27].

В случае Ti/W (кривая 4) ширина запрещенной зоны, равная 3,0 эВ, очевидно, является средней для WO_3 ($E_g=2,87\ [26]$) и TiO_2 ($E_g=3,24$ эВ [28]). Таким образом, с уменьшением концентрации железа в составе покрытий ширина запрещенной зоны образцов уменьшается, что обусловлено уменьшением вклада вольфрамата железа в оптические свойства.

На рис. 4 представлены результаты фотокаталических испытаний образцов в деградации МО (10~мг/л, pH 6,8, $10~\text{ммоль/л}~\text{H}_2\text{O}_2$). В холостом эксперименте степень деградации МО не превышает 5 и 20% при облучении видимым и УФ светом, соответственно. Анализ рис. 4а показывает, что в УФ

области спектра фотокаталитическая активность образцов не зависит от наличия в них железосодержащих фаз. Степень деградации МО составляет в среднем 40% для всех исследуемых образцов. Отсюда следует, что основную роль в фотокаталитической деградации МО при воздействии УФ света играет триоксид вольфрама. Напомним, что в составе образца Ti/W обнаружен WO₃ в триклинной модификации, тогда как в образцах Ti/Fe:W присутствует WO₃ в кубической модификации. По мнению авторов [29], низкая фотокаталитическая активность кубической модификации триоксида вольфрама обусловлена его метастабильностью. Таким образом, изменение модификации WO₃ в составе ПЭО-слоев оказывает большее влияние на их фотокаталитическую активность, чем образование фазы вольфрамата железа.

Рис. 3. Спектры диффузного отражения в координатах Кубелки-Мунка (а) и определение края фундаментального поглощения для прямых разрешенных электронных переходов (б) в образцах: 1 - Ti/Fe:W=1:1, 2 - Ti/Fe:W=1:2, 3 - Ti/Fe:W=1:3, 4 - Ti/W.

Fig. 3. Diffuse reflection spectra in Kubelka-Munk coordinates (a) and determination of the fundamental absorption edge for direct allowed electronic transitions (δ) in samples: 1 – Ti/Fe:W=1:1, 2 – Ti/Fe:W=1:2, 3 – Ti/Fe:W=1:3, 4 – Ti/W

В видимой области спектра (510-680 нм) (рис. 4б) фотокаталитическая активность железосодержащих образцов выше, чем Ti/W образца, что, очевидно, обусловлено их большей способностью поглощать видимый свет.

Рис. 4. Результаты фотокаталических испытаний в условиях облучения У Φ (а) и видимым светом (б) с добавлением 10 ммоль/л H_2O_2

Fig. 4. Results of photocatalytic tests under irradiation with visible light and UV with the addition of 10 mmol/L H_2O_2

ЗАКЛЮЧЕНИЕ

В результате проведенных исследованиий установлено, что покрытия, полученные методом ПЭО в тетраборатно-вольфраматном электролите, содержащем хелатные комплексы Fe(III) с ЭДТА, независимо от мольного отношения Fe:W (1:1; 1:2; 1:3), включают в состав кристаллические фазы WO_3 в кубической и $Fe_2(WO_4)_3$ моноклинной модификации.

Уменьшение мольного отношения Fe:W в электролите от 1:1 до 1:3 приводит к уменьшению концентрации железа и атомного отношения Fe:W в покрытиях, что коррелирует с падением доли

ЛИТЕРАТУРА

- 1. Попова С.А., Центер И.М., Гаркушева Н.М., Матафонова Г.Г., Батоев В.Б. Очистка и обеззараживание воды УФ излучением светодиодной матрицы (365 нм) в железо-персульфатной системе. *Изв. вузов. Химия и хим. технология.* 2022. Т. 65. Вып. 2. С. 134-143. DOI:10.6060/ivkkt.20226502.6457.
- Zhang M., Dong H., Zhao L., Wang D., Meng D. A review on Fenton process for organic wastewater treatment based on optimization perspective. *Sci. Total Environ*. 2019. V. 670. P. 110–121. DOI: 10.1016/j.scitotenv.2019.03.180.
- Zhang F., Wang X., Liu H., Liu C., Wan Y., Long Y., Cai Z. Recent advances and applications of semiconductor photocatalytic technology. *Appl. Sci.* 2019. V. 9. N 12. P. 2489. DOI: 10.3390/app9122489.
- Zhang L., Jaroniec M. Toward Designing Semiconductor-Semiconductor Heterojunctions for Photocatalytic Applications. *Appl. Surf. Sci.* 2018. V. 430. P. 2–17. DOI: 10.1016/j.apsusc.2017.07.192.
- Alharthi F.A., Alanazi H.S., Alsyahi A.A., Ahmad N. Hydrothermal synthesis, characterization and exploration of photocatalytic activities of polyoxometalate: Ni-CoWO₄ Nanoparticles. *Crystals*. 2021. V. 11. N 5. P. 456. DOI: 10.3390/cryst11050456.

 $Fe_2(WO_4)_3$ и ростом доли WO_3 по данным энергодисперсионного и рентгенофазового анализов.

Методом Тауца установлено, что ширина запрещенной зоны Ті/W образца составляет 3,0 эВ. При образовании в составе покрытий вольфрамата железа (III) ширина запрещенной зоны снижается и составляет 2,01-2,68 эВ при концентрации железа в покрытиях от 10 до 4 ат. %.

По сравнению с образцом Ti/W, все Fесодержащие покрытия проявляют большую фотоактивность в деградации метилового оранжевого в видимой области спектра. При воздействии УФ света, все покрытия демонстрируют примерно равную фотоактивность.

БЛАГОДАРНОСТИ

Работа выполнена в рамках государственного задания Института химии ДВО РАН (проект № FWFN(0205)-2022-0001).

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ACKNOWLEDGMENTS

The work was carried out within the framework of the state assignment of the Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences (project No. FWFN(0205)-2022-0001).

The authors declare the absence a conflict of interest warranting disclosure in this article.

REFERENCES

- Popova S.A., Tsenter I.M., Garkusheva N.M., Matafonova G.G., Batoev V.B. Water treatment and disinfection by UV radi-ation of the LED matrix (365 nm) in the ferrous-persulfate system. *ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.].* 2022. V. 65. N 2. P. 134 143. DOI: 10.6060/ivkkt.20226502.6457.
- Zhang M., Dong H., Zhao L., Wang D., Meng D. A review on Fenton process for organic wastewater treatment based on optimization perspective. *Sci. Total Environ.* 2019. V. 670. P. 110–121. DOI: 10.1016/j.scitotenv.2019.03.180.
- Zhang F., Wang X., Liu H., Liu C., Wan Y., Long Y., Cai Z. Recent advances and applications of semiconductor photocatalytic technology. *Appl. Sci.* 2019. V. 9. N 12. P. 2489. DOI: 10.3390/app9122489.
- Zhang L., Jaroniec M. Toward Designing Semiconductor-Semiconductor Heterojunctions for Photocatalytic Applications. *Appl. Surf. Sci.* 2018. V. 430. P. 2–17. DOI: 10.1016/j.apsusc.2017.07.192.
- Alharthi F.A., Alanazi H.S., Alsyahi A.A., Ahmad N. Hydrothermal synthesis, characterization and exploration of photocatalytic activities of polyoxometalate: Ni-CoWO₄ Nanoparticles. *Crystals*. 2021. V. 11. N 5. P. 456. DOI: 10.3390/cryst11050456.

- Costa M.J. dos S., Lima A.E.B., Ribeiro E.P., Costa G. dos S., Longo E., da Luz G.E., Cavalcante L.S., Santos R. da S. Transition metal tungstates AWO₄ (A2+ = Fe, Co, Ni, and Cu) thin films and their photoelectrochemical behavior as photoanode for photocatalytic applications. *J. Appl. Electrochem.* 2023. V. 53. P. 1349–1367. DOI: 10.1007/s10800-023-01851-w.
- 7. Васильева М.С., Лукиянчук И.В., Сергеев А.А., Сергеева К.А., Черных И.В. Плазменно-электролитический синтез и характеристика гетероструктур WO₃–FeO–Fe₂O₃ и WO₃–FeO–Fe₂(WO₄)3. *Физикохимия поверхн. и защ. материалов.* 2021. Т. 57. № 3. С. 304–311. DOI: 10.31857/S0044185621030244.
- Vasilyeva M.S., Lukiyanchuk I.V., Sergeev A.A., Sergeeva K.A., Ustinov A.Y., Tkachev V.V., Arefieva O.D.
 Plasma electrolytic synthesis and characterization of oxide coatings with MWO₄ (M = Co, Ni, Cu) as photo-Fenton heterogeneous catalysts. *Surf. Coat. Technol.* 2021. V. 424. P. 127640. DOI: 10.1016/J.SURFCOAT.2021.127640.
- Ke J., Adnan Younis M., Kong Y., Zhou H., Liu J., Lei L., Hou Y. Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: A Review. *Nano-Micro Lett.* 2018. V. 10. P. 1–27. DOI: 10.1007/s40820-018-0222-4.
- Cheng M., Zeng G., Huang D., Lai C., Xu P., Zhang C., Liu Y., Wan J., Gong X., Zhu Y. Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil. *J. Hazard. Mater.* 2016. V. 312. P. 184–191. DOI: 10.1016/j.jhazmat.2016.03.033.
- Boudghene Stambouli H., Guenfoud F., Benomara A., Mokhtari M., Sönmez-Çelebi M. Synthesis of FeWO4 Heterogeneous Composite by the Sol–Gel Process: Enhanced Photocatalytic Activity on Malachite Green. *React. Kinet. Mech. Catal.* 2021. V. 133. P. 563–578. DOI: 10.1007/s11144-021-01994-x.
- Guo J., Zhou X., Lu Y., Zhang X., Kuang S., Hou W. Monodisperse spindle-like FeWO₄ nanoparticles: Controlled hydrothermal synthesis and enhanced optical properties. *J. Solid State Chem.* 2012. V. 196. P. 550–556. DOI: 10.1016/j.jssc.2012.07.026.
- Zazo J.A., Casas J.A., Mohedano A.F., Gilarranz M.A., Rodríguez J.J. Chemical pathway and kinetics of phenol oxidation by Fenton's reagent. *Environ. Sci. Technol.* 2005. V. 39. P. 9295–9302. DOI: 10.1021/ES050452H.
- Amrute A.P., De Bellis J., Felderhoff M., Schüth F. Mechanochemical Synthesis of Catalytic Materials. *Chem. A Eur. J.* 2021. V. 27. P. 6819–6847. DOI: 10.1002/chem.202004583.
- Rudnev V.S., Lukiyanchuk I.V., Vasilyeva M.S., Medkov, M.A. Adigamova M.V., Sergienko V.I. Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surf. Coat. Technol. 2016. 307. P. 1219–1235. DOI: 10.1016/j.surfcoat.2016.07.060.
- Kaseem M., Fatimah S., Nashrah N., Ko Y.G. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance. *Prog. Mater. Sci.* 2021. 117. P. 100735. DOI: 10.1016/j.pmatsci.2020.100735.
- Rogov A.B. Plasma Electrolytic Oxidation of A1050 Aluminium Alloy in Homogeneous Silicate-Alkaline Electrolytes with EDTA4- Complexes of Fe, Co, Ni, Cu, La and Ba under Alternating Polarization Conditions. *Mater. Chem. Phys.* 2015. V. 167. P. 136–144. DOI: 10.1016/J.MATCHEMPHYS.2015.10.020.

- Costa M.J. dos S., Lima A.E.B., Ribeiro E.P., Costa G. dos S., Longo E., da Luz G.E., Cavalcante L.S., Santos R. da S. Transition metal tungstates AWO₄ (A2+ = Fe, Co, Ni, and Cu) thin films and their photoelectrochemical behavior as photoanode for photocatalytic applications. *J. Appl. Electrochem.* 2023. V. 53. P. 1349–1367. DOI: 10.1007/s10800-023-01851-w.
- Vasilyeva M.S., Lukiyanchuk I.V., Sergeev A.A., Sergeeva K.A., Chernykh I.V. Plasma electrolytic synthesis and characteristics of WO₃–FeO–Fe₂O₃ and WO₃–FeO–Fe₂(WO₄)₃ heterostructures. *Prot. Met. Phys. Chem. Surfaces.* 2021. V. 57. P. 543–549. DOI: 10.1134/S2070205 121030242.
- Vasilyeva M.S., Lukiyanchuk I.V., Sergeev A.A., Sergeeva K.A., Ustinov A.Y., Tkachev V.V., Arefieva O.D.
 Plasma electrolytic synthesis and characterization of oxide coatings with MWO₄ (M = Co, Ni, Cu) as photo-Fenton heterogeneous catalysts. *Surf. Coat. Technol.* 2021. V. 424. P. 127640. DOI: 10.1016/J.SURFCOAT.2021.127640.
- Ke J., Adnan Younis M., Kong Y., Zhou H., Liu J., Lei L., Hou Y. Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: A Review. *Nano-Micro Lett.* 2018. V. 10. P. 1–27. DOI: 10.1007/s40820-018-0222-4.
- Cheng M., Zeng G., Huang D., Lai C., Xu P., Zhang C., Liu Y., Wan J., Gong X., Zhu Y. Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil. *J. Hazard. Mater.* 2016. V. 312. P. 184–191. DOI: 10.1016/j.jhazmat.2016.03.033.
- Boudghene Stambouli H., Guenfoud F., Benomara A., Mokhtari M., Sönmez-Çelebi M. Synthesis of FeWO4 Heterogeneous Composite by the Sol–Gel Process: Enhanced Photocatalytic Activity on Malachite Green. *React. Kinet. Mech. Catal.* 2021. V. 133. P. 563–578. DOI: 10.1007/s11144-021-01994-x.
- Guo J., Zhou X., Lu Y., Zhang X., Kuang S., Hou W. Monodisperse spindle-like FeWO₄ nanoparticles: Controlled hydrothermal synthesis and enhanced optical properties. *J. Solid State Chem.* 2012. V. 196. P. 550–556. DOI: 10.1016/ j.jssc.2012.07.026.
- Zazo J.A., Casas J.A., Mohedano A.F., Gilarranz M.A., Rodríguez J.J. Chemical pathway and kinetics of phenol oxidation by Fenton's reagent. *Environ. Sci. Technol.* 2005. V. 39. P. 9295–9302. DOI: 10.1021/ES050452H.
- Amrute A.P., De Bellis J., Felderhoff M., Schüth F. Mechanochemical Synthesis of Catalytic Materials. *Chem. A Eur. J.* 2021. V. 27. P. 6819–6847. DOI: 10.1002/chem.2020 04583.
- Rudnev V.S., Lukiyanchuk I.V., Vasilyeva M.S., Medkov, M.A. Adigamova M.V., Sergienko V.I. Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surf. Coat. Technol. 2016. 307. P. 1219–1235. DOI: 10.1016/j.surfcoat.2016.07.060.
- Kaseem M., Fatimah S., Nashrah N., Ko Y.G. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance. *Prog. Mater. Sci.* 2021. 117. P. 100735. DOI: 10.1016/j.pmatsci.2020.100735.
- Rogov A.B. Plasma Electrolytic Oxidation of A1050 Aluminium Alloy in Homogeneous Silicate-Alkaline Electrolytes with EDTA4- Complexes of Fe, Co, Ni, Cu, La and Ba under Alternating Polarization Conditions. *Mater. Chem. Phys.* 2015. V. 167. P. 136–144. DOI: 10.1016/J.MATCHEMPHYS.2015.10.020.

- Zhou S., Huang J., Zhang T., Ouyang H., Li A., Zhang Z. Effect of Variation Mn/W Molar Ratios on Phase Composition, Morphology and Optical Properties of MnWO4. *Ceram. Int.* 2013. V. 39. P. 5159–5163. DOI: 10.1016/j.ceramint.2012.12.012.
- Rudnev V.S., Vasilyeva M.S., Kondrikov N.B., Tyrina L.M. Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium. *Appl. Surf. Sci.* 2005. V. 252. N 5. P. 1211-1220. DOI: 10.1016/j.apsusc.2004.12.054.
- Дятлова Н.М., Темкина В.Я., Попов К.И. Комплексоны и комплексонаты металлов. М.: Химия. 1988. 544 с.
- Gumerova N.I., Rompel A. Polyoxometalates in solution: speciation under spotlight. *Chem. Soc. Rev.* 2020. V. 49. N 21. P. 7568–7601. DOI: 10.1039/d0cs00392a.
- Casanova L., Ceriani F., Pedeferri M., Ormellese M. Addition of organic acids during PEO of titanium in alkaline solution. *Coatings*. 2022. V. 12. N 2. P. 143. DOI: 10.3390/coatings12020143.
- 23. **Руднев В.С.** Рост анодных оксидных слоев в условиях действия электрических разрядов. *Защита металлов*. 2007. Т. 43. № 3. С. 296-302.
- Xia C., Jia Y., Tao M., Zhang Q. Tuning the band gap of hematite α-Fe₂O₃ by sulfur doping. *Phys. Lett. A* 2013. 377.
 P. 1943–1947. DOI: 10.1016/j.physleta.2013.05.026.
- Iqbal R.M., Pramoda Wardani D.A., Hakim L., Damsyik A., Safitri R., Fansuri H. The structural and optical band gap energy evaluation of TiO₂-Fe₂O₃ composite. *IOP Conf. Ser. Mater. Sci. Eng.* 2020. V. 833. P. 012072. DOI: 10.1088/1757-899X/833/1/012072.
- Bayati M.R., Moshfegh A.Z., Golestani-Fard F., Molaei R. (WO₃)_x—(TiO₂)_{1-x} nano-structured porous catalysts grown by micro-arc oxidation method: Characterization and formation mechanism. *Mater. Chem. Phys.* 2010. V. 124. P. 203–207. DOI: 10.1016/j.matchemphys.2010.06.020.
- Aslam I., Cao C., Tanveer M., Farooq M.H., Tahir M., Khalid S., Khan W.S., Idrees F., Rizwan M., Butt F.K. A facile one-step fabrication of novel WO₃/Fe₂(WO₄)₃·10.7H₂O porous microplates with remarkable photocatalytic activities. *Cryst. Eng. Comm.* 2015. V. 17. P. 4809–4817. DOI: 10.1039/c5ce00712g.
- Опра Д.П., Соколов А.А., Синебрюхов С.Л., Ткаченко И.А., Зиатдинов А.М., Гнеденков С.В. Синтез, электронная структура и магнитные свойства нанокристаллического кислород-дефицитного TiO₂–δ(В). Изв. вузов. Химия и хим. технология. 2023. Т. 66. Вып. 1. С. 73 83. DOI: 10.6060/ivkkt.20236601.6666.
- Szilágyi I.M., Fórizs B., Rosseler O., Szegedi Á., Németh P., Király P., Tárkányi G., Vajna B., Varga-Josepovits K., László K. WO₃ photocatalysts: influence of structure and composition. *J. Catal.* 2012. V. 294. P. 119–127. DOI: 10.1016/j.jcat.2012.07.013.

- Zhou S., Huang J., Zhang T., Ouyang H., Li A., Zhang Z. Effect of Variation Mn/W Molar Ratios on Phase Composition, Morphology and Optical Properties of MnWO₄. *Ceram. Int.* 2013. V. 39. P. 5159–5163. DOI: 10.1016/j.ceramint.2012.12.012.
- Rudnev V.S., Vasilyeva M.S., Kondrikov N.B., Tyrina L.M. Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium. *Appl. Surf. Sci.* 2005. V. 252. N 5. P. 1211-1220. DOI: 10.1016/j.apsusc.2004.12.054.
- Dyatlova N.M., Temkina V.Ya., Popov K.I. Complexons and Complexonates of Metals. M.: Khimiya. 1988. 544 p. (in Russian).
- Gumerova N.I., Rompel A. Polyoxometalates in solution: speciation under spotlight. *Chem. Soc. Rev.* 2020. V. 49. N 21. P. 7568–7601. DOI: 10.1039/d0cs00392a.
- Casanova L., Ceriani F., Pedeferri M., Ormellese M. Addition of organic acids during PEO of titanium in alkaline solution. *Coatings*. 2022. V. 12. N 2. P. 143. DOI: 10.3390/coatings12020143.
- Rudnev V.S. Growth of anodic oxide layers under electric discharge conditions. *Prot. Met.* 2007. V. 43. N 3. P. 275–280. DOI: 10.1134/S0033173207030125.
- Xia C., Jia Y., Tao M., Zhang Q. Tuning the band gap of hematite α-Fe₂O₃ by sulfur doping. *Phys. Lett. A* 2013. 377.
 P. 1943–1947. DOI: 10.1016/j.physleta.2013.05.026.
- 25. Iqbal R.M., Pramoda Wardani D.A., Hakim L., Damsyik A., Safitri R., Fansuri H. The structural and optical band gap energy evaluation of TiO₂-Fe₂O₃ composite. *IOP Conf. Ser. Mater. Sci. Eng.* 2020. V. 833. P. 012072. DOI: 10.1088/1757-899X/833/1/012072.
- Bayati M.R., Moshfegh A.Z., Golestani-Fard F., Molaei R. (WO₃)_x—(TiO₂)_{1-x} nano-structured porous catalysts grown by micro-arc oxidation method: Characterization and formation mechanism. *Mater. Chem. Phys.* 2010. V. 124. P. 203–207. DOI: 10.1016/j.matchemphys.2010.06.020.
- Aslam I., Cao C., Tanveer M., Farooq M.H., Tahir M., Khalid S., Khan W.S., Idrees F., Rizwan M., Butt F.K. A facile one-step fabrication of novel WO₃/Fe₂(WO₄)₃·10.7H₂O porous microplates with remarkable photocatalytic activities. *Cryst. Eng. Comm.* 2015. V. 17. P. 4809–4817. DOI: 10.1039/c5ce00712g.
- Opra D.P., Sokolov A.A., Sinebryukhov S.L., Tkachenko I.A., Ziatdinov A.M., Gnedenkov S.V. Synthesis, electronic structure, and magnetic properties of nanocrystalline oxygen-deficient TiO₂–δ(B). ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 1. P. 73 83. DOI: 10.6060/ivkkt.20236601.6666.
- Szilágyi I.M., Fórizs B., Rosseler O., Szegedi Á., Németh P., Király P., Tárkányi G., Vajna B., Varga-Josepovits K., László K. WO₃ photocatalysts: influence of structure and composition. *J. Catal.* 2012. V. 294. P. 119–127. DOI: 10.1016/j.jcat.2012.07.013.

Поступила в редакцию 19.02.2024 Принята к опубликованию 11.11.2024

Received 19.02.2024 Accepted 11.11.2024