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Исследование механизмов и причин возникновения критических явлений и хаоти-

ческих колебаний в кинетике гомогенных химических реакций, а также поиск соответ-

ствующих примеров таких реакций является актуальным направлением развития пред-

ставлений о процессах самоорганизации, играющих важную роль в эволюции живой при-

роды. Известно, что основным условием существования сложно-периодических и хаоти-

ческих незатухающих колебаний является переход динамической химической системы в 

окрестность такого неустойчивого стационарного состояния, при котором все устойчи-

вые стационарные состояния недоступны (абсолютная неустойчивость). В литературе 

известны необходимые условия возникновения неустойчивых стационарных состояний 

(критерий Бендиксона-Дюлака и др.). Точные условия рождения-гибели хаотических ре-

жимов до сих пор не известны. Динамические модели химических реакций представляют 

собой системы обыкновенных дифференциальных уравнений, основанных на механизмах 

реакций и соответствующих кинетических законах, связанных со средой протекания ре-

акции (идеальная, неидеальная). В настоящее время известны примеры моделей хаотиче-

ской динамики для гомогенных химических реакций, протекающих по нелинейным ста-

дийным схемам с классической кинетикой закона действующих масс. В данной работе 

исследована возможность описания хаотических колебаний в гомогенных химических ре-

акциях, протекающих по линейным стадийным схемам в изотермическом реакторе иде-

ального смешения с новым кинетическим законом, который назван нами «полиморфным». 

Полиморфная кинетика обобщает известные кинетические законы – идеальный закон 

действующих масс Гульберта-Вааге и неидеальный кинетический закон Марселина-Де 

Донде. В отличие от этих законов полиморфная кинетика учитывает возможное взаим-

ное влияние реагентов в каждой элементарной стадии химической реакции. Показано, 

что полиморфная кинетика позволяет описать сложно-колебательную и хаотическую 

динамику химических реакций простыми линейными по ключевым (определяющим дина-

мику) реагентам механизмами. Приведены примеры реакций, для которых наличие экспе-

риментально наблюдаемого хаоса численно воспроизведено и доказано в рамках поли-

морфной кинетики с использованием критерия Шильникова и показателей Ляпунова. 

Ключевые слова: полиморфная кинетика, гомогенные химические реакции, изотермический ре-

актор идеального смешения, равновесия, неустойчивость, хаос 
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The study of the mechanisms and causes of critical phenomena and chaotic oscillations in 

the kinetics of homogeneous chemical reactions, as well as the search for appropriate examples of 

such reactions, is a relevant area of development of ideas about self-organization processes that 

play an important role in the evolution of living nature. It is known that the main condition for the 

existence of complex-periodic and chaotic undamped oscillations is the transition of a dynamic 

chemical system to such an unstable stationary state in which stable stationary states are inacces-

sible (absolute instability). The literature contains the necessary conditions for the emergence of 

unstable stationary states (the Bendixson-Dulac criterion, etc.). The exact conditions for the birth 

and death of chaotic regimes are still unknown. Dynamic models of chemical reactions are systems 

of ordinary differential equations based on reaction mechanisms and the corresponding kinetic 

laws associated with the reaction environment (ideal, non-ideal). At present, examples of chaotic 

dynamics models are known for homogeneous chemical reactions proceeding according to nonlin-

ear stage schemes with classical kinetics of the law of mass action. In this paper, the possibility of 

describing chaotic oscillations in homogeneous chemical reactions proceeding according to linear 

stage schemes in an isothermal reactor of ideal mixing with a new kinetic law, which is called 

"polymorphic", is investigated. Polymorphic kinetics generalizes the known kinetic laws - the ideal 

law of Hulbert-Waage mass action and the non-ideal kinetic law of Marcelin-De Donde. Unlike 

these laws, polymorphic kinetics takes into account the possible mutual influence of reagents in 

each elementary stage of a chemical reaction. It is shown that polymorphic kinetics allows describ-

ing complex oscillatory and chaotic dynamics of chemical reactions by simple linear mechanisms 

with respect to key (determining the dynamics) reagents. Examples of reactions are given for which, 

within the framework of polymorphic kinetics, the existence of experimentally observed chaos has 

been numerically reproduced and proven using the Shilnikov criterion and Lyapunov exponents. 

Keywords: polymorphic kinetics, homogeneous chemical reactions, isothermal reactor of ideal mixing, 
equilibrium, instability, chaos 
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ВВЕДЕНИЕ 

Колебательные процессы природы многие 

десятилетия привлекают внимание исследователей 

из различных естественных наук (биология, химия, 

физика, математика) [1-2]. При этом природа и ме-

ханизмы рождения-гибели апериодических незату-

хающих колебаний (хаос, странные аттракторы) до 

сих пор не очень понятны и многие вопросы оста-

ются не решенными: каковы формальные и реали-

стичные модели хаоса; как они согласуются с экс-

периментальными данными и др. Приведем основ-

ные работы, в которых проводились исследования 

этих вопросов. 

Формальные модели хаоса систематизиро-

вал Спротт [3]. Большинство из них сводится к си-

стеме обыкновенных дифференциальных уравне-

ний (ОДУ) вида х = y, у = z, z = az + y2 x, из 

которой следует, что даже единственная нелиней-

ность одного из слагаемых в правой части этих 

уравнений может быть причиной хаотического по-

ведения динамической системы. В [4] доказано, 

что более простой модели хаоса не может быть. В 

настоящее время хаос обнаружен в качественно 

различных системах: только с неустойчивыми рав-

новесиями (типично), одним устойчивым равнове-

сием, без равновесий и скрытыми аттракторами [3-4]. 

Однако, эти модели не описывают наблюдаемый в 

природных и промышленных процессах хаос. 

Более реалистичные модели хаоса и схемы 

гомогенных реакций приведены Росслером [5]. 

Одна из них имеет вид 

1) A + X  2X, 2) X + Y2Y, 3) B + Y C,  

4) X + Z  D, 5) E + Z  2Z,        (1) 

где A, B, C, D, E – основные вещества; X, Y, Z – 

промежуточные вещества. Этот механизм описы-

вает хаос в рамках закона действующих масс 

(ЗДМ) в квазистационарных по основным веще-

ствам условиях. На основе этой схемы нами уста-
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новлена более простая нелинейная схема гомоген-

ной реакции [6]: 

1) A + X  2X, 2) X + Y 2Y,  

3) Z + Y  D, 4) E + Z  2Z,       (2) 

описывающая хаос около единственного неустой-

чивого равновесия. В [7] показано, что схема с од-

ной линейной по промежуточным веществам 

стадией 

1) A + X  2X, 2) X + Y  2Y,  

3) Z + Y  D, 4) E  Z,       (3) 

описывает хаос около двух неустойчивых равнове-

сий. Схема (3) является одной из простейших из-

вестных в настоящее время хаотических моделей 

гомогенных химических реакций в рамках кине-

тики ЗДМ [8-11].  

Таким образом, в настоящее время известны 

модели хаотической динамики для гомогенных хи-

мических реакций, протекающих по нелинейным 

стадийным схемам с идеальной классической ки-

нетикой ЗДМ. В данной работе исследована воз-

можность описания хаотических колебаний в го-

могенных химических реакциях, протекающих по 

линейным стадийным схемам с неидеальным поли-

морфным кинетическим законом. 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 

Механизм линейной гомогенной химиче-

ской реакции включает стадии  

Aji + Хji   Хki + Aki ,  (4) 

где Аji, Aki – реагенты, концентрации которых прак-

тически постоянны в ходе реакции (неключевые 

реагенты); Хji, Хki – реагенты, концентрации кото-

рых меняются в ходе реакции (ключевые реагенты, 

существенные реагенты – в терминах А.М. Жабо-

тинского [12]); i – номер стадии; j  k – номера клю-

чевых реагентов. Такие стадии линейны по ключе-

вым реагентам и могут быть нелинейными по 

остальным реагентам. Динамика этой реакции в 

изотермическом реакторе идеального смешения 

(РИС) в квазистационарных по неключевым реа-

гентам условиях описывается системой обыкно-

венных дифференциальных уравнений (ОДУ) [13]: 

xj = ∑ ri, xj(t0) = xj0,   (5) 

где xj(t)  текущие концентрации ключевых реаген-

тов, безразмерные (б/р); xj0  соответствующие 

начальные концентрации (начальные условия, 

н.у.); t  время, (с); ri(wi,,fji)  скорости стадий (с1); 

wi  частоты стадий, включающие сомножителями 

концентрации неключевых веществ, (с1); fji  ки-

нетические функции ключевых реагентов j в ста-

диях i, (б/р), вид которых постулируется различ-

ными кинетическими законами. 

Кинетика ЗДМ. В идеальной системе кине-

тические функции предполагаются зависящими 

только от концентраций исходных реагентов и 

неизменными на разных стадиях реакции (4), т.е. 

fji = fj = xj, i = 1, 2, 3, …   (6) 

Такая гипотеза верна при малых концентра-

циях ключевых реагентов [13].  

С ростом концентраций ключевых реаген-

тов кинетика реакции по разным причинам может 

отклоняться от идеальной и ее адекватное описа-

ние постулируется различными обобщениями 

ЗДМ, учитывающими реальные условия проведе-

ния реакции. 

Кинетика Марселина-Де Донде (МДД). В 

рамках этого неидеального обобщения ЗДМ кине-

тические функции считаются зависящими от хими-

ческих потенциалов реагентов [14], связанных с 

концентрациями исходных реагентов и выражаю-

щих их химическую активность. Для стадий вида 

(4) кинетические функции и потенциалы определя-

ются выражениями  

fji = fj = exp(j),  i = 1, 2, 3, …  (7) 

где j = ln xj,  химические потенциалы (с точно-

стью до множителя) реагентов j, (б/р). Такое опреде-

ление предполагает, что кинетические функции и по-

тенциалы не изменяются в течение всей реакции. 

Полиморфная кинетика. При этой более об-

щей, чем ЗДМ и МДД, неидеальной кинетике хи-

мические потенциалы ключевых реагентов и их ки-

нетические функции учитывают зависимость не 

только от концентраций исходных ключевых реа-

гентов стадии, но и возможную зависимость от 

концентраций других ключевых реагентов, участ-

вующих во всех стадиях реакции (индуцированная 

неидеальность). Для реакции (4) химические по-

тенциалы и кинетические функции могут быть за-

писаны в виде 

ji = ji ln xj, fji = exp(ji) = xj
ji , (8) 

где ji  химические потенциалы (с точностью до 

множителя) реагентов j в стадии i реакции (4), (б/р); 

ji  коэффициенты неидеальности (константы), 

отражающие степень взаимовлияния реагентов j в 

i-ой стадии. 

Это предположение подкрепляется тем, что 

со среднестатистической точки зрения, в ходе хи-

мической реакции составляющие ее стадии могут 

осуществляться как последовательно, так и парал-
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лельно или в смешанном порядке. Такое обобще-

ние кинетических функций в литературе отсутствует 

и представляет собой «полиморфную кинетику»  

расширенный неидеальный кинетический закон. 

Приведем некоторые аргументы в пользу 

неидеальной, в том числе полиморфной кинетики. 

В работе [15] скорость реакции гидрокарбоксили-

рования 5-гексена с неидеальной кинетикой МДД 

адекватно описывает экспериментальные данные в 

области концентраций, в которой ЗДМ не приме-

ним. В [16] показана неприменимость термодина-

мики необратимых процессов к эволюции биологи-

ческих систем. В [17] рассмотрены модели кине-

тики сверхкритических процессов на основе пред-

ставлений теории абсолютных скоростей реакций 

для неидеальных реакционных систем, учитываю-

щие межмолекулярные взаимодействия, которые 

меняют энергию активации элементарных стадий. 

Установлено, что в плотных фазах межмолекуляр-

ные взаимодействия приводят к отклонениям от за-

конов идеальных систем. В [18] разработана про-

цедура построения кинетических уравнений фи-

зико-химических процессов в плотных фазах на ос-

нове модели решеточного газа, учитывающей мно-

гочастичные эффекты. Появление таких эффектов 

связано с одновременным влиянием потенциалов и 

конфигураций соседних молекул на скорость эле-

ментарной стадии, в которой участвует рассматри-

ваемая молекула.  

С учетом сказанного выше, для химической 

реакции (4) с тремя ключевыми реагентами X, Y и 

Z кинетические функции реагентов в i-ой стадии в 

рамках полиморфной кинетики (8) имеют вид: 

fxi = xxi yxi zxi, fyi = xyi yyi zyi , 

 fzi = x 
zi y 

zi z 
zi ,    (9) 

где xi, xi, xi, yi, yi, yi, zi, zi, zi  коэффициенты 

неидеальности реагентов в i-ой стадии. Соответ-

ствующие потенциалы запишутся 

xi = ln fxi, yi = ln fyi, zi = ln fzi.  (10) 

При ji = 1, ji = 0, ji = 0 (j = x, y, z) поли-

морфная кинетика вырождается в идеальный ЗДМ. 

При ji = 1, ji  0 или ji  0 полиморфная кинетика 

совпадает с кинетикой МДД. 

Утверждение. В рамках полиморфной ки-

нетики любую нелинейную кинетическую модель 

можно описать схемой с линейными стадиями 

вида (4).  

Обоснование. Правая часть нелинейной ки-

нетической модели (5) состоит из полиномиальных 

мономов, число которых равно числу стадий реак-

ции. Каждый нелинейный моном можно предста-

вить в виде набора нескольких линейных мономов, 

число которых равно молекулярности нелинейной 

стадии. Последовательно перенумеровав стадии, по-

лучим схему, состоящую из линейных стадий (4). 

Представим нелинейную обратимую схему 

(3) в виде схемы, состоящей из необратимых ли-

нейных по ключевым реагентам стадий. Для этого 

удалим автокатализ и разобьем стадии взаимодей-

ствия ключевых реагентов на пары линейных ста-

дий: 1) A  X, 1) X  B, 2) X  C, 2*) D  Y, 

3) Y  F, 3*) Z  G, 4) E  Z. Затем перенуме-

руем стадии последовательно и получим необрати-

мый линейный аналог схемы (3): 

1) A  X, 2) X  B, 3) X  C, 4) D Y,  

5) Y E, 6) Z  F, 7) G  Z.     (11) 

Зададим для ключевых реагентов (подчерк-

нуты) и стадий этой схемы неидеальные кинетиче-

ские функции вида (9) с потенциалами (10) в сле-

дующем виде 

fx1 = x, fx2 = xy, fx3 = x2, fy4 = xy, 

fy5 = yz, fz6 = yz, f 
z7 = 1.            (12) 

Это означает, что кинетика стадии 1 не от-

личается от идеальной, на кинетику стадии 2 вли-

яет не только реагент X (как в идеальной кине-

тике), но и реагент Y, на кинетику стадии 3 влияет 

реагент Х в квадрате, кинетику стадии 4 опреде-

ляют реагенты X и Y, кинетика стадии 5 зависит не 

только от Y (как в идеальной кинетике), скорость 

стадии 6 зависит не только от Z (как в идеальной 

кинетике), но и от Y, а скорость стадии 7 постоянна 

(на кинетику этой стадии влияют только неключе-

вые реагенты). 

С учетом сказанного выше, нестационарная 

кинетическая модель реакции (11) в предположе-

нии квазистационарности по неключевым реагентам 

в рамках полиморфной кинетики принимает вид 

х = w1х  w2 х2  w3хy, у = w4хy  w5yz, 

z = w7  w6yz.          (13) 

Эта система имеет два равновесия x = (w1   

 (w4w6w1  D)/(2w2w4w6), y = (w4w6w1   D)/(2w4w6w3), 

z= 2w7w4w3/(w4w6w1  D), D  (w4
2w6

2w1
2   

 4w4w6w3w5w7w2)1/2. Их устойчивость и тип опре-

деляется собственными числами (с.ч.) системы 

ОДУ (13), т.е. корнями ее характеристического 

уравнения 3 + 2 +  +  = 0, где  = w1  (w4   

 2w2)x + (w3 + w6)y + w5z,  = w4w6(2w2x  

 w1)xy,  = 2w2w4x2  (2w2w6y + 2w2w5z w4w6y 

+ w1w4)x + w1w5z + w1w6y   w3w5yz  w3w6y2. 

Покажем, что полиморфная модель хими-

ческой реакции, протекающей квазистационарно в 

открытой изотермической системе по линейной 
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стадийной схеме (11), позволяет описать хаотиче-

скую динамику. Для этого приведем известные 

признаки и условия возникновения хаоса. 

Признаки и условия возникновения хаоса. 

Критерии хаоса даже для трехмерных систем ОДУ 

в литературе не описаны, известны лишь некото-

рые его признаки [1-2, 19, 20] для таких систем: 

1) чувствительность к н.у. (эффект ба-

бочки);  

2) недостижимость устойчивых равновесий 

при некоторых н.у. (абсолютная неустойчивость); 

3) показатели Ляпунова L1, L2, L3 при боль-

ших временах (t  ) имеют знаки (+, 0, ), причем 

их сумма L1 + L2 + L3 < 0 (хаотическая сигнатура); 

4) ведущими (ближайшими к мнимой оси) 

являются комплексно-сопряженные собственные 

числа (c.ч.) равновесия типа седло-фокус [19] (кри-

терий Шильникова); 

5) хаос через удвоение периода (сценарий 

Фейгенбаума-Шарковского-Магницкого, ФШМ) 

[20]. 

Найдем условия, при которых все признаки 

возникновения хаоса для полиморфной кинетиче-

ской модели (12)-(13) выполняются. Согласно кри-

терию Шильникова [19], хаос связан с появлением 

двух неустойчивых равновесий типа седло-фокусы 

(выражение для критерия Шильникова имеет гро-

моздкий вид и здесь не приводится). Одно из рав-

новесий характеризуется одним отрицательным и 

парой комплексных с.ч. с положительной действи-

тельной частью (соответствует одномерному устой-

чивому и двумерному неустойчивому инвариант-

ным многообразиям). Второе равновесие характе-

ризуется одним положительным и парой комплекс-

ных с.ч. с отрицательной действительной частью 

(соответствует одномерному неустойчивому и дву-

мерному устойчивому инвариантным многообра-

зиям). Если в равновесиях действительная часть 

комплексных с.ч. является ведущей, то взаимодей-

ствие устойчивых и неустойчивых траекторий при-

водит к хаотической динамике около таких равно-

весий. 

Такое состояние системы возникает, напри-

мер, в многомерной области параметров реакции 

со стадийной схемой (11) вблизи значений частот 

стадий w1 = 3, w2 = 0,75, w3 = 18, w4 = 20, w5 = 10, 

w6 = 9, w7 = 1с1, когда с.ч. в двух равновесиях при-

нимают значения (2,4683, 0,3441  3,1574i) и 

(2,2432  3,2456i, 1,5997). При этом равновесия 

имеют координаты x,1,2 = (0,3643, 3,9214), y,1,2 =  

= (0,1525, 0,0142), z,1,2 = (0,6557, 7,0585) и распо-

лагаются по разные стороны от хаотического аттрак-

тора: одно (с меньшими координатами) – внутри, 

другое – вне. Хаос возникает при движении из-

нутри аттрактора. Например, при w7 < 0,2 с1 в си-

стеме появляются регулярные автоколебания. При 

дальнейшем увеличении w7 до 0,9 с1 колебания по-

степенно усложняются. И, наконец, при w7 > 0,9 с1 

колебания становятся нерегулярными (хаотиче-

скими). Дальнейшее увеличение w7 до  2 с1 при-

водит к возвращению регулярных колебаний. При 

w7  2,5 с1 колебания исчезают. В целом такая дина-

мика наблюдается вблизи значений w1 = 3, w2 = 0,75, 

w3 = 18, w4  [18, 22], w5 = 10, w6  [8, 10], w7 = 1 с1 

и соответствует ФШМ-сценарию хаоса. Динамика 

реакции, протекающей по схеме (11) с кинетиче-

ской моделью (12)-(13) в области хаоса, показана 

на рис. a-b. 

Как видно из рис. a-b, динамика концентра-

ций ключевых реагентов реакции (11) с кинетиче-

ской моделью (12)-(13) представляет собой слож-

ные непериодические незатухающие колебания. 

Для оценки меры их хаотичности с помощью про-

граммы matds [21] были рассчитаны показатели 

Ляпунова при частотах стадий w1 = 3, w2 = 0,75, 

w3 = 18, w4  [18, 22] w5 = 10, w6  [8, 10]; w7 = 1, с1  

и начальных условиях x0 = y0 = z0 = 0,1 для разных 

моментов времени. Эти показатели при t = 100 с 

принимают значения L1  0,1882; L2  0,0085  0; 

L3  2,2069; L1 + L2 + L3 < 0, рис. b. Дальнейшее 

увеличение времени до 1000 с сохраняет сигнатуру 

(+, 0, ). Для трехмерных автономных систем такая 

сигнатура характеризует странный аттрактор [1, 2]. 

Таким образом, все приведенные выше при-

знаки и условия возникновения хаоса выполнены, и 

существование хаотических колебаний для реак-

ции, протекающей по стадийной схеме (11) с поли-

морфной кинетической моделью (12)-(13) можно 

считать доказанным. 

Применение полиморфной кинетики к кон-

кретным химическим реакциям, характеризую-

щимся хаотическими экспериментальными дан-

ными. Покажем, что полиморфная кинетическая 

модель (12)-(13) может быть адаптирована для хи-

мических реакций, протекающих по линейным ста-

дийным схемам и характеризующихся при опреде-

ленных экспериментальных условиях хаотиче-

скими режимами. Для этого в стадийной схеме (11) 

и соответствующей ей кинетической модели (12)-

(13) проведем линейную замену всех (или части) 

переменных: x  kx, y  ky, z  kz. Тогда модель 

(13) примет вид 

х = w1х  kw2 х2  kw3хy, у = kw4хy  kw5yz, 

 z = (1/k)w7  kw6yz,              (14) 

где k – коэффициент деформации (растяжения-
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сжатия) амплитуды. Эта модель позволяет регули-

ровать амплитуду колебаний. Дополнительное из-

менение частот стадий в схеме (11) позволяет регу-

лировать также и частоту колебаний. Таким обра-

зом, различные комбинации таких преобразований 

позволяют модифицировать кинетическую модель 

(12)-(13) для описания соответствующих экспери-

ментальных данных.  

Пусть, например, в эксперименте наблюда-

ются колебания с максимальной амплитудой, не пре-

восходящей единицы, а их частота в 10 раз меньше 

приведенных на рис. 1, a. Выполним замену пере-

менных с коэффициентом деформации k = 5 и 

уменьшим частоты стадий в m = 10 раз. Тогда ам-

плитуда колебаний уменьшится в 5 раз, а частота 

уменьшится в 10 раз, рис. 1, с. При этом коорди-

наты равновесия не изменятся, т.к. коэффициенты 

деформации одинаковые, с.ч. уменьшатся в 10 раз и 

критерий Шильникова по-прежнему выполняется. 

Таким образом, стадийная схема (11) и ее 

аналоги с соответствующими полиморфными ки-

нетическими моделями вида (12)-(13) могут быть 

использованы для описания хаотических режимов 

протекания различных гомогенных химических ре-

акций, например [12, 15, 22-28].  

 

 
а 

 
b 

 
c 

 
d 

Рис. Хаос в реакции, протекающей по схеме (11) с полиморфной кинетической моделью (12)-(13) при w1 = 3, w2 = 0.75, w3 = 18, 

w4 = 21, w5 = 10, w6 = 8, w7 = 1 с-1 и н.у. x0 = y0 = z0 = 0,1: а - динамика концентраций ключевых реагентов; b - динамика показа-

телей Ляпунова; c - динамика концентраций ключевых реагентов при k = 5; m = 10; d - фазовый портрет концентраций ключе-

вых реагентов 

Fig. Chaos in the reaction proceeding according to scheme (11) with a polymorphic kinetic model (12)-(13) at w1 = 3, w2 = 0.75,  

w3 = 18, w4 = 21, w5 = 10, w6 = 8, w7 = 1 с-1 and i.c. x0 = y0 = z0 = 0.1: а - dynamics of concentrations of key reagents; b - dynamics of Lya-

punov exponents; c - dynamics of concentrations of key reagents at k = 5; m = 10; d - phase portrait of concentrations of key reagents 

 

Пример 1. Схеме (11) соответствует, напри-

мер, механизм реакции гликолиза (реакция Сель-

кова) [12, 22, 23], включающий стадии (ключевые 

реагенты подчеркнуты): 

1)  S1, 2) S1 + E1  S1E1, 3) S1 + E1S2   

 S1E1S3, 4) S1E1  E1 + S2, 
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5) S2 + E2  S2E2 , 6) S3 + E1  E1S3,  

7) S2E2  E2 + S3, 

где S1  Ф-6-Ф (фруктозо-6-фосфат), S2  АДФ 

(аденозиндифосфат), S3  АМФ (аденозинмонофос-

фат), E1  ФФК (фосфофруктокиназа), E2  АДК 

(аденозинкиназа). В [31] для этой реакции экспери-

ментально обнаружены хаотические колебания ре-

акционной среды, которые могут быть описаны мо-

делью, аналогичной полиморфной кинетической 

модели (12)-(13). 

Пример 2. По схеме (11) может протекать 

разложение пероксида водорода 2Н2О2  2H2O + O2, 

включающее стадии [24]: 

1) Н2О2 + МZ+  ОН▪ + МZ+1 + HO, 2) ОН▪ +  

+ Н2О2  HO2
▪ + H2O,  

3) HO2
▪ ↔ H+ + O2

, 4) MZ+ + ОН▪  МZ+1 +  

+ ОН–,  

5) МZ+1 + O2
  МZ+ + O2, 6) MOZ+ + Н2О2 →  

→ МZ+ + O2 + H2O,  

7) Н2О2 + МZ+  H2O + MOZ+, 

где X  ОН▪ , Y  O2
, Z  MOZ+. В этой реакции ха-

отические колебания возможны при постоянстве 

концентраций неключевых реагентов (ключевые 

реагенты подчеркнуты). 

В [25-28] приведены другие гомогенные 

химические реакции, допускающие хаотические 

режимы (система янтарная кислота-оксигениро-

ванные комплексы железа, окисление гидрохи-

нона, окисление 1,6-дигидроксинафталина и др.), 

которые могут быть описаны линейными по клю-

чевым реагентам схемами-аналогами схемы (11). 

Отметим, что на практике хаотические ко-

лебания могут быть связаны также с различными 

случайными факторами [29-33]. В [31, 32] пока-

зано, что малые флуктуации газовой фазы в окрест-

ности критических значений кинетических пара-

метров могут привести к возникновению хаоса в 

химических реакциях. В [33] аналитически и чис-

ленно показано, что слабый шум может оказывать 

некоторое регуляризирующее влияние на хаотиче-

скую динамику. Таким образом, усиление или ослаб-

ление шума (эффект зашумления) можно исполь-

зовать на практике для регулирования стабильно-

сти осуществления химических реакций. 

ВЫВОДЫ 

Разработана и обоснована полиморфная 

модель неидеальной химической кинетики, пред-

ставляющая собой обобщение идеальной кинетики 

ЗДМ и неидеальной кинетики МДД. При этой ки-

нетике химические потенциалы ключевых реаген-

тов и их кинетические функции зависят не только 

от концентраций ключевых реагентов в данной 

стадии, но и от концентраций других ключевых ре-

агентов, участвующих в разных стадиях реакции 

(индуцированная неидеальность). Такое обобще-

ние кинетических функций в литературе отсут-

ствует и представляет собой расширенный неиде-

альный кинетический закон. На основе полиморф-

ной кинетики построены линейные по ключевым 

реагентам стадийные схемы, которые могут ис-

пользоваться для описания хаотической динамики 

конкретных химических реакций в открытой изо-

термической системе. Отмечено, что уровень шума 

является своеобразным регулятором устойчивости 

протекания химических реакций. Таким образом, 

полиморфная кинетика является альтернативой из-

вестным кинетическим законам ЗДМ и МДД и поз-

воляет описать хаотическую динамику, а также и 

другие, «более простые», критические явления (ги-

стерезисы и автоколебания) в химических реак-

циях линейными стадийными схемами, а не только 

нелинейных схемами с би- и более молекулярными 

стадиями, не всегда имеющим физический смысл. 

Это необходимо учитывать при обосновании де-

тальных механизмов химических реакций, демон-

стрирующих хаотические колебания в изотермиче-

ских условиях. 
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