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Bo Bvemname Cinnamomum cassia wiupoko ucnonb3yemcsa He moabKo KaK RPAHOCMb, HO
U KAK K1I04e60ll UHZPeOUeHm 8 MeOulyuHe, KOCMemuKe u nepepadamoleéarouieii nPoMblid1eHHO-
cmu. Paznuunsle knumamuyuecKkue yciogua é paziuyuHbIX 2€02PapuuecKux pezuonax, 2oe evlpa-
wueaemca KOpuua, 3HaYUmenbHo 6AUAM HA ee Kauecmeo, Ymo 4acmo npueooun K Henpeona-
MEPEHHOMY CMEUWUBAHUIO KOPUUbL U3 DA3HBIX UCHOUHUKOS. /[na ananuza o6pazyoe Kopuysl uc-
nOb306a1aCH UHPPAKPACHAA CREKMPOCKONUA C HAPYUIEHHBIM NOJIHBIM GHYMPEHHUM Ompaice-
Huem u npeoopazosanuem Dypve (ATR-FTIR) ona usmepenus 139 oopasuos, coopannsix é ue-
muipex paznuunuix nposunyuax Boemnama — Henoaii, Kyanznuns, Txanvxoa u Kyanznam — kaxe-
0as u3 KOmopuslx npeoCcmaegnana YHUKAIbHble Kaumamuueckue ycnogusa. /na nogviuienua Kaue-
cmea OaHHBIX Obll NPUMEHEH MEemoO C2aANCUanus emopoi npouszeoonoii Casuyrkozo-I'ones,
Ymo YAyuuiUuI0 CReKmMPAaibHoe pa3peuienue u CHU3UN0 wiym. /na oyenku nomenyuana Knaccu-
durkayuu ucnonv3oeanuce HeKOHMpPOIUPYeMble XeMOMEemPUIecKue Memoobl, 6KII0YAA AHATU3
2nagnvlx komnonenmos (PCA) u uepapxuueckui knacmepuwtit ananus (HCA). Kpome mozo, kon-
mpoaupyemvle mMooenu MaAwuUHHo20 obOyuenusa, maxkue kax Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF), GausianNB, BernoulliNB, AdaBoost u Gradient
Boosting, ovinu 06vedunenst ¢ pesyromamamu PCA u 00yuenst ¢ ucnoib308anuem c2ianceHHvlx
cnekmpog nepeoii npou3zeoonou Casuyxoz2o-1onea ona knaccugpuxayuu. Pesynomamol nokazanu,
ymo mooenv PCA-SVM oocmuzna nausvicuieii mounocmu kaaccugpuxayuu (96.88%) co cnex-
mpamu 6mopoil RPOU3B00HOIl, M020a KAK Nepeas NPOouU3eo00HAsA U HeodpadomanHvle OAHHbBIE HO-
Kazanu 0onee HU3KYIO npouseooumenvHocms. B amom uccnedoeanuu noouepkusaemcs, umo
cnekmpockonus ATR-FTIR ¢ couemanuu ¢ npeosapumenvHoli 00padomkoil 6mopoil npou3eoo-
Hoit u PCA-SVM obecneuusaem npocmoit, 6b1cmpulil, Hepa3pyuiarouwiuii U IKOHOMUUecku I pex-
MueHbLIL NOOX00 0715 PA3IUUEHUA 00PA3U 06 KOPbL KOPULbL HA OCHOBE UX 2€02PAPUUecKo20 npouc-
X0d4c0eHUs, NPeoazas YeHHYI0 UH(OPpMauuIo 01 OUeHKU Kaiecmeda.
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In Vietnam, Cinnamomum cassia is widely utilized not only as a spice but also as a key
ingredient in medicine, cosmetics, and the processing industry. The varying climatic conditions
across different geographic regions where cinnamon is cultivated significantly influence its quality,
often leading to the unintentional mixing of cinnamon from multiple sources. To analyze cinnamon
samples, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) was
employed to measure 139 samples collected from four distinct provinces in Vietnam — Yen Bai,
Quang Ninh, Thanh Hoa, and Quang Nam — each representing unique climatic conditions. To
enhance data quality, the second derivative Savitzky-Golay smoothing method was applied, improv-
ing spectral resolution and reducing noise. Unsupervised chemometric techniques, including Prin-
cipal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), were used to assess
classification potential. Additionally, supervised machine learning models, such as Support Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF), GausianNB, BernoulliNB, AdaBoost,
and Gradient Boosting were combined with PCA results and trained using first derivative Savitzky-
Golay smoothed spectra for classification. The results demonstrated that the PCA-SVM model
achieved the highest classification accuracy (96.88%) with the second derivative spectra, whereas
first derivative and raw data exhibited lower performance. This study underscores that ATR-FTIR
spectroscopy, when combined with second-derivative preprocessing and PCA-SVM, provides a sim-
ple, rapid, non-destructive, and cost-effective approach for distinguishing cinnamon bark samples
based on their geographical origin, offering valuable insights for quality assessment.

Keywords: ATR-FTIR, Cinnamon cassia, derivative spectra, geographical classification, machine learning

INTRODUCTION

Cinnamon (Cinnamomum spp.) is cultivated
worldwide and widely used in food, pharmaceuticals,
and cosmetics. As a member of the Lauraceae family
[1], it thrives in tropical and subtropical climates, mak-
ing Vietnam an ideal location for its cultivation. The
primary species grown in Vietnam, Cinnamomum cas-
sia, is distributed across multiple regions [2, 3].

The quality of cinnamon depends on its chem-
ical composition, which is influenced by factors such
as plant variety, cultivation practices, processing meth-
ods, and environmental conditions, including climate
and soil composition [4, 5]. Recognizing this, Vietnam
has designated four regions — Thuong Xuan, Van Yen,
Tra Bong, and Tra My — as geographically protected
cinnamon-growing areas. Vietnam’s diverse climate
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and topography contribute to regional variations in cin-
namon composition [6]. The four regions examined in
this study represent distinct climatic conditions. Yen
Bai (Northwest Vietnam) has a warm, mountainous
climate influenced by cold winds and flash floods.
Quang Ninh (Northeast Vietnam) experiences colder
weather with a humid monsoon climate and frequent
tropical storms. Thanh Hoa (North Central Vietnam)
has mild winters, high rainfall, and hot summers af-
fected by foehn winds. Quang Nam (South Central Vi-
etnam) features a dry climate with mild winters and
low precipitation. These environmental differences
significantly impact cinnamon’s chemical profile,
further underscoring the importance of classifying it
based on geographical origin to ensure authenticity and
product integrity [7].
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The geographical origin of cinnamon is often
undisclosed by industries, especially when different
varieties or sources are blended [8]. With consumers
becoming more conscious of food quality and safety,
there is increasing scrutiny over food authenticity. Me-
dia reports on food fraud have heightened concerns,
leading to growing demands for stricter regulatory
oversight [9-10]. The most common forms of econom-
ically motivated adulteration include the mixing of pre-
mium with lower quality such as Cinnamomum verum
and Cinnamomum cassia [11] or Bunium persicum
mixed with Cuminum cyminum, Safed zeera [12], or
mixing products of different origins such as green tea
products [13], ... practices that occur frequently in the
supply chain.

Analytical approaches for cinnamon authenti-
cation fall into two categories: targeted and non-tar-
geted analysis. Targeted analysis focuses on detecting
or quantifying specific compounds to verify authentic-
ity, often relying on chromatographic techniques due
to the complexity of cinnamon’s chemical composi-
tion. For example, HPLC-UV has been used to quan-
tify key cinnamon compounds for species discrimina-
tion [14-16], while UPLC-MS and GC-MS [17-19],
and nuclear magnetic resonance (NMR) [18]. Non-tar-
geted analysis, on the other hand, does not depend on
specific compounds but instead utilizes signals from
unidentified components (e.g., chromatographic peak
areas) or instrumental data (e.g., selected NIR spectral
regions) [20]. Among the various methods used in non-
targeted analysis, FTIR spectroscopy stands out for its
rapid analysis, high accuracy, and ease of use. When
integrated with machine learning techniques, FTIR be-
comes a powerful tool for classifying samples based on
their geographic origin. Previous studies have success-
fully applied FTIR-based classification to herbal prod-
ucts such as Paris yunnanensis [21], Ganoderma lu-
cidum [22], and Cinnamomum verum [23]. In addition
to classifying plant-based products, FTIR spectra are
also combined with machine learning to identify syn-
thetic products such as food colors E110, E124 [24].
However, no study has yet explored the classification
of Vietnamese cinnamon based on its geographical
origin using the combined approach of FTIR and ma-
chine learning.

While targeted analytical methods necessitate
extensive sample preparation, gradient elution proto-
cols, and may lack specific biomarkers associated with
geographic origin, non-targeted analysis accounts for
the inherent variability in the chemical composition of
cinnamon from different regions. Consequently, non-
targeted analysis represents a more suitable approach
for the authentication of cinnamon. This approach
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broadens detection scope, it often fails to provide de-
tailed chemical information directly related to sample au-
thenticity, particularly when spectroscopic techniques are
employed. This study aims to develop a rapid and ac-
curate classification method for determining the geo-
graphical origin of cinnamon by integrating ATR-
FTIR spectroscopy with various machine learning al-
gorithms. Both linear models (including SVM with a
linear kernel, GausianNB, and BernoulliNB) and non-
linear models (including RF, DT, AdaBoost, and Gra-
dientBoost) were employed. These models were com-
bined with dimensionality reduction techniques and pre-
processing methods, such as the derivative Savitzky-Go-
lay method, to optimize variable inputs through spec-
trum preprocessing, hyperparameter tuning, and wave-
length selection. The entire data processing and model
development were carried out using open-source Py-
thon, ensuring scalability and potential integration into
broader classification systems in factories.

METHODOLOGY

Geographical location and climate of the stud-
ied sites

Yen Bai province, located in the Northeast re-
gion, experiences cold, cloudy winters with minimal
sunshine and frequent drizzle. Summers are hot and
rainy, aligning with the monsoon season. The northeast
monsoon influences the region, causing early cold
spells compared to other provinces. Quang Ninh prov-
ince, also in the Northeast, shares similar climatic char-
acteristics with Yen Bai. Winters are cold, cloudy, and
drizzly, while summers are hot and rainy, coinciding
with the monsoon period. The northeast monsoon sig-
nificantly impacts Quang Ninh, leading to an early on-
set of cold weather. Thanh Hoa province, situated in
the North Central Coast region, has mildly cold winters
with occasional drizzles. Summers are hot and humid,
with substantial rainfall during the monsoon season.
The province’s climate is influenced by both northern
and central weather patterns, resulting in diverse con-
ditions. Quang Nam Province, in the South-Central
Coast region, experiences mild winters with less pro-
nounced cold spells. Summers are hot and humid, with
the rainy season typically occurring from September to
December [25].

Sample Collection and Preparation

Cinnamomum cassia bark samples were col-
lected from four provinces in Vietnam, including: Yen
Bai (48 samples), Quang Ninh (20 samples), Thanh
Hoa (22 samples), and Quang Nam (49 samples). Each
sample was labeled and stored in a dry environment. A
10 g portion of each sample was ground and sieved to
obtain a particle size of 125-250 um. The powdered
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samples were vacuum-sealed and stored at -30 °C for
no longer than two weeks before analysis. Moisture
content was measured before analysis to ensure levels
remained below 15%.

IR Measurements

FTIR spectra were obtained using an IR Affin-
ity-1S spectrometer (Shimadzu, Japan) equipped with
a diamond ATR crystal. Measurements were con-
ducted at room temperature over the spectral range of
4000-600 cm?, with a data interval of 2 cm™ and an
average spectrum derived from 40 scans.

Data Preprocessing

In practice, FTIR spectroscopy is highly sensi-
tive to background interference, light scattering, fluc-
tuating noise levels, and other unpredictable factors.
Preprocessing plays a vital role in transforming raw
data into clean, structured data, thereby improving the
accuracy of the developed model. Multivariate data
processing is essential for minimizing variations
caused by instrumental differences and environmental
conditions during spectral acquisition. In this study,
normalization using Min-Max scaling and first- and
second-order Savitzky-Golay derivative filtering [26]
were applied.

Exploratory Data Analysis

Unsupervised learning techniques were uti-
lized to assess the data structure and clustering tenden-
cies. Hierarchical Cluster Analysis (HCA) [27] was ap-
plied to investigate relationships between samples and
identify similarities, while Principal Component Anal-
ysis (PCA) [28] was used for dimensionality reduction
and pattern recognition within the dataset. Based on the
results from unsupervised learning in identification, it
is a fundamental step to proceed with supervised learn-
ing algorithms.

Supervised machine learning models were ap-
plied to classify the Cinnamomum cassia samples. Be-
fore training the model, Savitzky-Golay smoothing
was applied to raw data to remove noises. The standard
normal variate (SNV) was used correctly for the light
scattering effect in spectral data. Savitsky-Golay first
and second derivative techniques are used to enhance
the signal-to-noise ratio. PCA was also integrated into
studied models to improve classification efficiency.

The tested models included both linear and
non-linear approaches. The linear models comprised
Support Vector Machine (SVM) with a linear kernel
[29], Gaussian Naive Bayes (GNB) [30], and Bernoulli
Naive Bayes (BNB) [31]. The non-linear models in-
cluded Random Forest (RF) [32], Decision Tree (DT)
[33], AdaBoost, and Gradient Boosting [34]. The da-
taset was split into a training set (70%) and a test set
(30%). All data processing and model training were
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performed using Python 3.11.6, following the work-
flow illustrated in Fig. 1.

‘YenBai: 48 samples
IR Spectral Data Set QuangNam: 49 samples
(139 samples) QuangNinh: 20 samples
l ThanhHoa: 22 samples

Speciral preprocessing

|

Savitzky - Golay Filter
SN (deriv = 2) pea

|

Splitting Data

|

[

Training Set.
(107 samples)

Modeling and
Hyperparameter fine_tuning
(GridSearchCV)

!

Optimal model — Test Set

(32 samples)

|

Performance of prediction
for test set

Test set validation —i

Fig. 1. Flow diagram for preprocessing of FTIR spectra and
supervised learning models
Puc. 1. biok-cxema mpeiBapuTeNIbHOH 00pabOTKH CIIEKTPOB
FTIR u KOHTpOIMpYeMEIX Mozeneil 00ydeHus

RESULT AND DISCUSSION

FTIR fingerprints of Vietnamese Cinnamomum
cassia samples

The IR spectral signals within the range of
4000-600 cm™ were extracted into an Excel dataset, re-
sulting in a dataset comprising 139 samples and 1701
columns representing intensity values. The output data
was labeled as discrete variables: Yen Bai — YB (La-
bel: 1); Quang Ninh — Qni (Label: 2); Thanh Hoa—TH
(Label: 3); Quang Nam — Qna (Label: 4) for the pur-
pose of constructing classification models.

The Cinnamomum cassia samples are complex
mixtures, with their IR spectra displaying a total overlap
of absorption bands from various components (Fig. 2a).
Most characteristic fingerprint peaks for Cinnamomum
cassia are concentrated within the 1800-600 cm™ range
(Fig. 2a). Analysis of these peaks confirmed con-
sistency with previous studies [23]. For instance, the
peaks at 1679 cm™ and 1626 cm™ correspond to the
stretching vibrations of an aldehyde carbonyl (C=0),
indicating high levels of cinnamaldehyde and alde-
hydes in Cinnamomum cassia’s volatile oil. The peaks
at 1124 cm® and 1070 cm? are attributed to C=0
stretching and C-OH deformation vibrations, while the
peak at 685 cm™ corresponds to alkene vibrational ab-
sorption. Despite the complexity and diversity of Cin-
namomum cassia ’s chemical composition, the spectra
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of all samples within the 1800-600 cm™ range exhibit Min-Max scaling and first- and second-order Savitzky-
significant similarities. Golay derivative filtering were implemented to nor-
Significant spectral noise was observed in the  malize the spectral data for each sample. The IR spec-
regions below 1749 cm™ and above 3581 cm?, and the  tra, preprocessed using Min-Max Scaling — the most
data was further influenced by variations in measure-  effective algorithm, are shown alongside the first de-
ment conditions. Therefore, before further analysis, rivative (Fig. 2b) and the second derivative (Fig. 2c).
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Fig. 2. IR spectra data of cinnamomum cassia with different processing techniques. (a) FTIR of 139 samples before reprocessing. (b)
FTIR spectra after preprocessed by first derivative and Savitsky- Goley. (c) Further processed IR spectra with 2nd derivative and Savit-
sky- Goley to enhance spectra features coesdondig with 4 samples collected in 4 geographical regions
Puc. 2. Jlannbie UK-criekTpos Cinnamomum cassia ¢ pasnuyHbiME MeToamu 00paboTku. (a) MK-crekrpol 139 06pasios 10 MOBTOPHOM
06padotku. (b) Criektpsr MK-criekTpoB mociie npeasapuTenbHoii 00paboTku meproii mponssoaHoi u Casunkum-I'oneem. (¢) JanbHei-
mast obpabotka UK criekTpoB co BTopoii npon3BoaHoi 1 CaBULIKKMM-I oeeM JUtsl yimydIIeHus XapaKTePUCTUK CIIEKTPOB COBMECTHO ¢ 4
obpasiamu, coopanHbIMU B 4 reorpad)uueckux peruoHax
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Fig. 3. HCA on the raw data (a) and first derivative spectra (b) of Cinnamomum cassia samples
Puc. 3. HCA Ha HeoOpaGoTaHHBIX JaHHBIX (@) U CHEeKTpax mepBoi npousBoHoi (b) o6pasos Cinnamomum cassia

The raw data displays the original spectra with
distinct features but is impacted by baseline drift and
linear trends, which obscure finer details. The first de-
rivative enhances local variations, particularly in the
600-1000 and 2800-3000 cm™ regions, though it also
amplifies random noise. The second derivative fur-
ther improves sensitivity to subtle features and effec-
tively removes parabolic baseline effects, albeit with
considerable noise amplification. Despite this, the
second derivative remains the most effective for clas-
sification tasks.

Exploratory Data Analysis Using Unsuper-
vised Learning for Discrimination of Cinnamomum
cassia

Due to the high overlap in chemical composi-
tion fingerprints, distinguishing the geographical
origin among the 139 samples is challenging. There-
fore, applying chemometric techniques, such as hierar-
chical clustering analysis (HCA) and principal compo-
nent analysis (PCA), enhances the ability to extract
meaningful spectral patterns, improving the classifica-
tion accuracy of Cinnamomum cassia samples based
on their IR spectra.

Cluster analysis of FTIR spectra of Cin-
namomum cassia

To better visualize the relationships and ge-
netic similarities among Cinnamomum cassia samples
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from different regions, hierarchical cluster analysis
(HCA) was conducted on the processed IR spectra of
139 samples. The quantity and proportion of each sam-
ple type within the resulting clusters are detailed in Fig. 3
and summarized in Table 1. These results provide in-
sights into the clustering structure and the distribution
of sample types across different clusters. The hierar-
chical clustering diagram illustrates the hierarchical re-
lationships among samples, grouping similar samples
into clusters. The clusters correspond to the target cat-
egories identified in the study, with each region as-
signed a specific label: Yen Bai (YB) — 1, Quang Ninh
(QNi) — 2, Thanh Hoa (TH) — 3, and Quang Nam
(QNa) — 4. This classification aligns with the regional
variations in climate and environmental conditions,
supporting the differentiation of Cinnamomum cassia
samples based on their geographic origin. The HCA
analysis revealed four main clusters. However, some
clusters exhibit overlaps, particularly in cases where
sample types share similar spectral characteristics. The
distance between the two main groups in the raw data
is only about 2.0, significantly lower than the 14 ob-
served with the first derivative. This substantial over-
lap between Quang Ninh and Thanh Hoa presents chal-
lenges for linear classification models such as Linear
Discriminant Analysis (LDA) or distance-based meth-
ods in distinguishing between regions. The issue arises
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from the raw data containing excessive redundant in-
formation and features with low discriminative power.
Samples from Region 3 formed a distinct cluster, indi-
cating clear differentiation from other regions. Mean-
while, samples from Regions 1 and 2 clustered to-
gether, reflecting their compositional similarities. The
final cluster primarily consisted of samples from Re-
gion 4, with a few from Region 1, suggesting a certain
degree of overlap.

This clustering pattern clearly indicates that
Cinnamomum cassia samples have gradually adapted
to their local climates and environmental conditions
over time. As previously reported, the chemical com-
position of Cinnamomum cassia varies significantly
with geographical proximity, leading to similar chem-
ical profiles among different species collected within
the same region.

Principal Components Analysis of FTIR spec-
tra of Cinnamomum cassia

PCA was conducted on the raw spectra of cina-

mon samples indicate the cumulative explained vari-
ance of the first 20 PCs which is presented in Fig. 4(a).
The five most significant PCs accounted for 96.52% of
the total variation in the Cinnamomum cassia sample
set (PC-1 = 68.97%, PC-2 = 89.14%, PC-3 = 92.76%,
PC-4 =94.99%, and PC-5 = 96.52%) with their cumu-
lative contribution exceeding 99.94%. In contrast, the
first derivative, despite having a lower cumulative var-
iance (70% with 3 components and 90% with 10 com-
ponents), significantly enhances group separation by
highlighting local variations in the spectra. As a result,
the boundaries between regions become more distinct,
reducing overlap between groups and improving clas-
sification performance (Fig. 5b). Meanwhile, the sec-
ond derivative does not provide substantial improve-
ment over the first derivative, with a similar cumula-
tive variance (70% with 3 components and 90% with
10 components), but it may amplify noise due to its
high sensitivity to errors in the original data. This re-
sults in less effective group separation compared to the
first derivative.
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Fig. 4. Cumulative explained variance rates of first 40 PCs on the raw data (a) and (b)- first derivative spectra
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Fig. 5. The score plot of PC-1 and PC-2 analyzing Cinnamomum cassia from different provinces based on raw data (a) and first deriva-
tive spectra (b)
Puc. 5. T'paduk ouenok ITK-1 u ITK-2, anamusupyrommx Cinnamomum cassia u3 pasHbIX MPOBUHIIMI Ha OCHOBE HEOOPAOOTAHHBIX JaH-
HBIX (@) ¥ CIIEKTPOB IepBOH NPOoM3BOIHOH (b)

The score plots of FTIR raw data, first deriva-
tive, and second derivative indicate that the first deriv-
ative provides the most effective group separation.
with PC-1 and PC-2 providing discrimination in the 2D
scores plot (Fig. 5a). Cinnamomum cassia samples
from the Quang Ninh region were distinctly clustered
on the right axis, while many samples from the Quang
Nam region appeared on the left of the 2D scores plot.
However, the distribution of northeastern samples
slightly overlapped with that of Cinnamomum cassia
from the northern region. It achieves greater distances
between major groups and sharper boundaries, partic-
ularly between Yen Bai and Quang Nam. However, ap-
proximately 10-15% of samples from Quang Ninh and
Thanh Hoa remain intermixed due to their similar spec-
tral characteristics.

Supervised learning Algorithm for original
Classification

The supervised learning algorithms were de-
veloped and trained on 80% of the total samples, while
the model's performance was evaluated on the remain-
ing 20%, as described in Fig. 1 (actual number of sam-
ples in the study).

The confusion matrix of PCA-SVM reveals its
superior classification performance across all three da-
tasets with high density along the diagonal elements
(where predicted labels match true labels), particularly
for labels 0 and 8. On the no derivative and first deriv-
ative datasets, PCA-SVM accurately predicts the ma-
jority of samples for these labels while effectively min-
imizing confusion among intermediate labels such as
1, 2, and 7. Even on the second derivative dataset, de-
spite some minor misclassifications between labels 1
and 7, PCA-SVM maintains strong performance with la-
bel 8, demonstrating consistent classification stability.

Table 1

Confusion Matrix of the selected supervised learning Methods
Tabnuya 1. MaTpuna nyTaHUIbI BBIOPAHHBIX KOHTPOJHPYEMBIX MeTO10B 00y4eHHs

Algorithm Raw Data

First Derivative spectra

Second Derivative spectra

PCA-SVM

1 2
Predicted label

1 2
Predicted label
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Continuation of the table

PCA-GaussianNB

True label

1 2
predicted label

True label

True label

B 8
7 @ 0 7
s o
5 o c ) s
4 a
3 5 3
2 2
1 2 1
o 0

PCA-BernoulliNB

True label

True label

True label

5
4
3
iz

o

PCA-RF

True label

True label

True label

8
7
6
5
4
3
2
il
0

1 2
predicted label

PCA-DT

True label

Tive label

Tue labe!

5
4
3
iz
1
°

PCA-AdaBoost

True label

True label

M

IS

True label

|

B

PCA-GradientBoost

True label

1 2
Predicted label

True label

@

True label

8
7
6
5
a
i=
2
1
°

1 2 1 2
predicted label predicted label
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Table 2

Summary of Classification Results of the studied super-
vised learning models

Tabnuya 2. CBoaka pe3yJIbTATOB Kiaaccupukanuu usy-

YEHHBbIX MOIIEJIeﬁ KOHTPOJIMPYEMOT' O OﬁVl‘leHI/lﬂ
Model Pre-pro- #PCs Accuracy
cessing (%)
None 35 93.75
SVM 1%t der. 28 96.88
2" der, 33 96.88
None 15 90.63
GausianNB 15t der. 41 87.50
2" der, 20 84.38
None 36 84.38
BernoulliNB 1t der. 10 78.13
2" der. 17 62.50
None 24 93.75
RF 15t der. 19 81.25
2" der. 10 93.75
None 8 81.25
DT 1%t der. 8 68.75
2" der. 13 68.75
None 15 81.25
AdaBoost 1%t der. 20 68.75
2" der. 8 68.75
None 19 87.50
GradientBoosting 1t der. 17 78.13
2" der. 16 93.75

In contrast, PCA-GaussianNB and PCA-Ber-
noulli NB exhibit a more uniform distribution of pre-
dictions but encounter significant misclassifications,
especially with intermediate labels like 2, 5, and 6, par-
ticularly on the second derivative dataset, where these
labels are more frequently mispredicted.

PCA-RF and PCA-DT also demonstrate rea-
sonable predictive power for label 8 across all datasets;
however, they exhibit a notable tendency to confuse la-
bels 0 and 1, which undermines their overall classifi-
cation efficacy.

Meanwhile, boosting models such as PCA-
AdaBoost and PCA-GradientBoost show improvement
on the "Second derivative" dataset, with better predic-
tions for labels 7 and 8, but they still suffer from sub-
stantial misclassifications across other labels, notably
on the no derivative and first derivative datasets, where
labels 5 and 6 are frequently misclassified.

The results, presented as accuracy (%) of the
predicted models applied to the tested samples using
raw data, first derivative, and second derivative FTIR
after PCA reduction, are listed in Table 2.

The results in Table 2 suggest that the Support
Vector Machine (SVM) and Random Forest (RF) mod-
els exhibit strong performance, with accuracy ranging
from 93.75% to 96.88%, due to their ability to handle

ChemChemTech. 2025. V. 68. N 7
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nonlinear data. Specifically, SVM improves from
93.75% (without preprocessing, using 35 principal
components) to 96.88% when applying first or second
derivatives (with 28-33 principal components). This
improvement indicates that derivative preprocessing
enhances spectral peaks and valleys, aiding the model
in defining nonlinear classification boundaries more
effectively.

Similarly, RF maintains a stable accuracy of
93.75%, demonstrating its robustness against prepro-
cessing variations. This stability highlights the strength
of its ensemble decision tree mechanism in managing
complex feature interactions, ensuring reliable classi-
fication across different preprocessing methods.

In contrast, Naive Bayes models, including
GaussianNB and BernoulliNB, exhibit limited per-
formance, with accuracies ranging from 62.50% to
90.63%. GaussianNB achieves its highest accuracy of
90.63% without preprocessing but drops to 84.38%
with the second derivative. This decline is due to the
model’s assumption of a normal distribution and fea-
ture independence, which do not align with spectral
data, where strong correlations between wavelengths
are present.

BernoulliNB performs even worse, with accu-
racy decreasing from 84.38% to just 62.50% when ap-
plying the second derivative. Since BernoulliNB is de-
signed for binary data, it is inherently unsuitable for
continuous spectral data. Moreover, derivative prepro-
cessing alters the data structure, further reducing its
class discrimination capability.

Among boosting models, Gradient Boosting
achieves 93.75% accuracy with the second derivative,
outperforming AdaBoost, which reaches a maximum
of 81.25%. This advantage is attributed to Gradient
Boosting’s ability to directly optimize the loss function
(typically log-loss), whereas AdaBoost primarily fo-
cuses on reweighting misclassified samples, making it
less effective for spectral classification.

The Decision Tree (DT) model, however,
shows lower performance, ranging from 68.75% to
81.25%. This is due to its tendency to overfit, particu-
larly when spectral data contains environmental or in-
strumental noise. Derivative preprocessing amplifies
this noise, further reducing classification accuracy by
leading to less precise decision boundaries.

Regarding the impact of preprocessing, apply-
ing first or second derivatives benefits certain models
like SVM and GradientBoosting by enhancing key
spectral features, but it proves detrimental to noise-
sensitive models like DT and BernoulliNB, signifi-
cantly reducing their performance. Meanwhile, LDA
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and RF show less dependence on preprocessing, high-
lighting their flexibility. Consequently, LDA emerges
as the optimal choice for this problem due to its high
performance, low computational resource demand
(only three principal components), and stability. If
nonlinear data processing is required, SVM is a strong
contender, particularly when paired with derivative
preprocessing.

CONCLUSION

This study demonstrates that FTIR spectros-
copy, combined with machine learning, enables effec-
tive classification of Cinnamomum cassia samples by
geographic origin. The ATR-FTIR spectra data cou-
pled with SVM and LDA models after using reduciton
techcniques (PCA) provided the highest classification
accuracy (96.88%), confirming the potential of FTIR-
based authentication for Cinnamomum cassia quality
assessment. The classification methods be the robust
protocol which is the fast and reliable approach for
identifying geographical origin identification of Viet-
namese Cinnamomum cassia.
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