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Во Вьетнаме Cinnamomum cassia широко используется не только как пряность, но 

и как ключевой ингредиент в медицине, косметике и перерабатывающей промышленно-

сти. Различные климатические условия в различных географических регионах, где выра-

щивается корица, значительно влияют на ее качество, что часто приводит к непредна-

меренному смешиванию корицы из разных источников. Для анализа образцов корицы ис-

пользовалась инфракрасная спектроскопия с нарушенным полным внутренним отраже-

нием и преобразованием Фурье (ATR-FTIR) для измерения 139 образцов, собранных в че-

тырех различных провинциях Вьетнама – Йенбай, Куангнинь, Тханьхоа и Куангнам – каж-

дая из которых представляла уникальные климатические условия. Для повышения каче-

ства данных был применен метод сглаживания второй производной Савицкого-Голея, 

что улучшило спектральное разрешение и снизило шум. Для оценки потенциала класси-

фикации использовались неконтролируемые хемометрические методы, включая анализ 

главных компонентов (PCA) и иерархический кластерный анализ (HCA). Кроме того, кон-

тролируемые модели машинного обучения, такие как Support Vector Machine (SVM), 

Decision Tree (DT), Random Forest (RF), GausianNB, BernoulliNB, AdaBoost и Gradient 

Boosting, были объединены с результатами PCA и обучены с использованием сглаженных 

спектров первой производной Савицкого-Голея для классификации. Результаты показали, 

что модель PCA-SVM достигла наивысшей точности классификации (96.88%) со спек-

трами второй производной, тогда как первая производная и необработанные данные по-

казали более низкую производительность. В этом исследовании подчеркивается, что 

спектроскопия ATR-FTIR в сочетании с предварительной обработкой второй производ-

ной и PCA-SVM обеспечивает простой, быстрый, неразрушающий и экономически эффек-

тивный подход для различения образцов коры корицы на основе их географического проис-

хождения, предлагая ценную информацию для оценки качества. 

Ключевые слова: ATR-FTIR, Cinnamon cassia, производные спектров, географическая классифи-
кация, машинное обучение 

 
 

 
Для цитирования: 

Буи Тхи Лан Фуонг, Хоанг Тхи Бич, Нгуен Ван Фуонг, Буи Ан Дуй, Нгуен Дук Фонг, Нгуен Мань Сон, Фам Зиа Бах, 

Нгуен Тхи Кам Ха, Та Тхи Тхао, Нгуен Тхи Киеу Ань Географический дискриминант и классификация корицы кассии, 

собранной во Вьетнаме, с использованием ИК-Фурье-спектроскопии АТR в сочетании с алгоритмами машинного обу-

чения. Изв. вузов. Химия и хим. технология. 2025. Т. 68. Вып. 7. С. 102113. DOI: 10.6060/ivkkt.20256807.7246. 

For citation: 

Bui Thi Lan Phuong, Hoang Thi Bich, Nguyen Van Phuong, Bui An Duy, Nguyen Duc Phong, Nguyen Manh Son, Pham 

Gia Bach, Nguyen Thi Cam Ha, Ta Thi Thao, Nguyen Thi Kieu Anh Geographical discriminant and classification of cin-

namomum cassia collected in Vietnam using ATR-FTIR coupled with machine learning algorithms. ChemChemTech [Izv. 

Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2025. V. 68. N 7. P. 102113. DOI: 10.6060/ivkkt.20256807.7246. 

 



 

Bui Thi Lan Phuong et al. 

 

ChemChemTech. 2025. V. 68. N 7  103  

 

 

GEOGRAPHICAL DISCRIMINANT AND CLASSIFICATION  

OF CINNAMOMUM CASSIA COLLECTED IN VIETNAM USING ATR-FTIR COUPLED  

WITH MACHINE LEARNING ALGORITHMS 

Bui Thi Lan Phuong, Hoang Thi Bich, Nguyen Van Phuong, Bui An Duy, Nguyen Duc Phong,  

Nguyen Manh Son, Pham Gia Bach, Nguyen Thi Cam Ha, Ta Thi Thao, Nguyen Thi Kieu Anh 

Bui Thi Lan Phuong, Hoang Thi Bich, Nguyen Van Phuong, Bui An Duy, Nguyen Thi Kieu Anh* 

Hanoi University of Pharmacy, Hanoi, Vietnam 

Nguyen Manh Son, Pham Gia Bach, Nguyen Thi Cam Ha, Ta Thi Thao 

Faculty of Chemistry, VNU University of Science, Hanoi, Vietnam 

Nguyen Duc Phong 

TRAPHACO Company, Hanoi, Vietnam 

In Vietnam, Cinnamomum cassia is widely utilized not only as a spice but also as a key 

ingredient in medicine, cosmetics, and the processing industry. The varying climatic conditions 

across different geographic regions where cinnamon is cultivated significantly influence its quality, 

often leading to the unintentional mixing of cinnamon from multiple sources. To analyze cinnamon 

samples, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) was 

employed to measure 139 samples collected from four distinct provinces in Vietnam – Yen Bai, 

Quang Ninh, Thanh Hoa, and Quang Nam – each representing unique climatic conditions. To 

enhance data quality, the second derivative Savitzky-Golay smoothing method was applied, improv-

ing spectral resolution and reducing noise. Unsupervised chemometric techniques, including Prin-

cipal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), were used to assess 

classification potential. Additionally, supervised machine learning models, such as Support Vector 

Machine (SVM), Decision Tree (DT), Random Forest (RF), GausianNB, BernoulliNB, AdaBoost, 

and Gradient Boosting were combined with PCA results and trained using first derivative Savitzky-

Golay smoothed spectra for classification. The results demonstrated that the PCA-SVM model 

achieved the highest classification accuracy (96.88%) with the second derivative spectra, whereas 

first derivative and raw data exhibited lower performance. This study underscores that ATR-FTIR 

spectroscopy, when combined with second-derivative preprocessing and PCA-SVM, provides a sim-

ple, rapid, non-destructive, and cost-effective approach for distinguishing cinnamon bark samples 

based on their geographical origin, offering valuable insights for quality assessment. 

Keywords: ATR-FTIR, Cinnamon cassia, derivative spectra, geographical classification, machine learning 

 

 
INTRODUCTION  

Cinnamon (Cinnamomum spp.) is cultivated 

worldwide and widely used in food, pharmaceuticals, 

and cosmetics. As a member of the Lauraceae family 

[1], it thrives in tropical and subtropical climates, mak-

ing Vietnam an ideal location for its cultivation. The 

primary species grown in Vietnam, Cinnamomum cas-

sia, is distributed across multiple regions [2, 3].  

The quality of cinnamon depends on its chem-

ical composition, which is influenced by factors such 

as plant variety, cultivation practices, processing meth-

ods, and environmental conditions, including climate 

and soil composition [4, 5]. Recognizing this, Vietnam 

has designated four regions – Thuong Xuan, Van Yen, 

Tra Bong, and Tra My – as geographically protected 

cinnamon-growing areas. Vietnam’s diverse climate 

and topography contribute to regional variations in cin-

namon composition [6]. The four regions examined in 

this study represent distinct climatic conditions. Yen 

Bai (Northwest Vietnam) has a warm, mountainous 

climate influenced by cold winds and flash floods. 

Quang Ninh (Northeast Vietnam) experiences colder 

weather with a humid monsoon climate and frequent 

tropical storms. Thanh Hoa (North Central Vietnam) 

has mild winters, high rainfall, and hot summers af-

fected by foehn winds. Quang Nam (South Central Vi-

etnam) features a dry climate with mild winters and 

low precipitation. These environmental differences 

significantly impact cinnamon’s chemical profile, 

further underscoring the importance of classifying it 

based on geographical origin to ensure authenticity and 

product integrity [7].  
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The geographical origin of cinnamon is often 

undisclosed by industries, especially when different 

varieties or sources are blended [8]. With consumers 

becoming more conscious of food quality and safety, 

there is increasing scrutiny over food authenticity. Me-

dia reports on food fraud have heightened concerns, 

leading to growing demands for stricter regulatory 

oversight [9-10]. The most common forms of econom-

ically motivated adulteration include the mixing of pre-

mium with lower quality such as Cinnamomum verum 

and Cinnamomum cassia [11] or Bunium persicum 

mixed with Cuminum cyminum, Safed zeera [12], or 

mixing products of different origins such as green tea 

products [13], ... practices that occur frequently in the 

supply chain. 

Analytical approaches for cinnamon authenti-

cation fall into two categories: targeted and non-tar-

geted analysis. Targeted analysis focuses on detecting 

or quantifying specific compounds to verify authentic-

ity, often relying on chromatographic techniques due 

to the complexity of cinnamon’s chemical composi-

tion. For example, HPLC-UV has been used to quan-

tify key cinnamon compounds for species discrimina-

tion [14-16], while UPLC-MS and GC-MS [17-19], 

and nuclear magnetic resonance (NMR) [18]. Non-tar-

geted analysis, on the other hand, does not depend on 

specific compounds but instead utilizes signals from 

unidentified components (e.g., chromatographic peak 

areas) or instrumental data (e.g., selected NIR spectral 

regions) [20]. Among the various methods used in non-

targeted analysis, FTIR spectroscopy stands out for its 

rapid analysis, high accuracy, and ease of use. When 

integrated with machine learning techniques, FTIR be-

comes a powerful tool for classifying samples based on 

their geographic origin. Previous studies have success-

fully applied FTIR-based classification to herbal prod-

ucts such as Paris yunnanensis [21], Ganoderma lu-

cidum [22], and Cinnamomum verum [23]. In addition 

to classifying plant-based products, FTIR spectra are 

also combined with machine learning to identify syn-

thetic products such as food colors E110, E124 [24]. 

However, no study has yet explored the classification 

of Vietnamese cinnamon based on its geographical 

origin using the combined approach of FTIR and ma-

chine learning.  

While targeted analytical methods necessitate 

extensive sample preparation, gradient elution proto-

cols, and may lack specific biomarkers associated with 

geographic origin, non-targeted analysis accounts for 

the inherent variability in the chemical composition of 

cinnamon from different regions. Consequently, non-

targeted analysis represents a more suitable approach 

for the authentication of cinnamon. This approach 

broadens detection scope, it often fails to provide de-

tailed chemical information directly related to sample au-

thenticity, particularly when spectroscopic techniques are 

employed. This study aims to develop a rapid and ac-

curate classification method for determining the geo-

graphical origin of cinnamon by integrating ATR-

FTIR spectroscopy with various machine learning al-

gorithms. Both linear models (including SVM with a 

linear kernel, GausianNB, and BernoulliNB) and non-

linear models (including RF, DT, AdaBoost, and Gra-

dientBoost) were employed. These models were com-

bined with dimensionality reduction techniques and pre-

processing methods, such as the derivative Savitzky-Go-

lay method, to optimize variable inputs through spec-

trum preprocessing, hyperparameter tuning, and wave-

length selection. The entire data processing and model 

development were carried out using open-source Py-

thon, ensuring scalability and potential integration into 

broader classification systems in factories. 

METHODOLOGY   

Geographical location and climate of the stud-

ied sites 

Yen Bai province, located in the Northeast re-

gion, experiences cold, cloudy winters with minimal 

sunshine and frequent drizzle. Summers are hot and 

rainy, aligning with the monsoon season. The northeast 

monsoon influences the region, causing early cold 

spells compared to other provinces. Quang Ninh prov-

ince, also in the Northeast, shares similar climatic char-

acteristics with Yen Bai. Winters are cold, cloudy, and 

drizzly, while summers are hot and rainy, coinciding 

with the monsoon period. The northeast monsoon sig-

nificantly impacts Quang Ninh, leading to an early on-

set of cold weather. Thanh Hoa province, situated in 

the North Central Coast region, has mildly cold winters 

with occasional drizzles. Summers are hot and humid, 

with substantial rainfall during the monsoon season. 

The province’s climate is influenced by both northern 

and central weather patterns, resulting in diverse con-

ditions. Quang Nam Province, in the South-Central 

Coast region, experiences mild winters with less pro-

nounced cold spells. Summers are hot and humid, with 

the rainy season typically occurring from September to 

December [25]. 

Sample Collection and Preparation  

Cinnamomum cassia bark samples were col-

lected from four provinces in Vietnam, including: Yen 

Bai (48 samples), Quang Ninh (20 samples), Thanh 

Hoa (22 samples), and Quang Nam (49 samples). Each 

sample was labeled and stored in a dry environment. A 

10 g portion of each sample was ground and sieved to 

obtain a particle size of 125–250 µm. The powdered 
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samples were vacuum-sealed and stored at -30 °C for 

no longer than two weeks before analysis. Moisture 

content was measured before analysis to ensure levels 

remained below 15%.  

IR Measurements 

FTIR spectra were obtained using an IR Affin-

ity-1S spectrometer (Shimadzu, Japan) equipped with 

a diamond ATR crystal. Measurements were con-

ducted at room temperature over the spectral range of 

4000-600 cm-1, with a data interval of 2 cm-1 and an 

average spectrum derived from 40 scans. 

Data Preprocessing  

In practice, FTIR spectroscopy is highly sensi-

tive to background interference, light scattering, fluc-

tuating noise levels, and other unpredictable factors. 

Preprocessing plays a vital role in transforming raw 

data into clean, structured data, thereby improving the 

accuracy of the developed model. Multivariate data 

processing is essential for minimizing variations 

caused by instrumental differences and environmental 

conditions during spectral acquisition. In this study, 

normalization using Min-Max scaling and first- and 

second-order Savitzky-Golay derivative filtering [26] 

were applied. 

Exploratory Data Analysis  

Unsupervised learning techniques were uti-

lized to assess the data structure and clustering tenden-

cies. Hierarchical Cluster Analysis (HCA) [27] was ap-

plied to investigate relationships between samples and 

identify similarities, while Principal Component Anal-

ysis (PCA) [28] was used for dimensionality reduction 

and pattern recognition within the dataset. Based on the 

results from unsupervised learning in identification, it 

is a fundamental step to proceed with supervised learn-

ing algorithms. 

Supervised machine learning models were ap-

plied to classify the Cinnamomum cassia samples. Be-

fore training the model, Savitzky-Golay smoothing 

was applied to raw data to remove noises. The standard 

normal variate (SNV) was used correctly for the light 

scattering effect in spectral data. Savitsky-Golay first 

and second derivative techniques are used to enhance 

the signal-to-noise ratio. PCA was also integrated into 

studied models to improve classification efficiency.  

The tested models included both linear and 

non-linear approaches. The linear models comprised 

Support Vector Machine (SVM) with a linear kernel 

[29], Gaussian Naïve Bayes (GNB) [30], and Bernoulli 

Naïve Bayes (BNB) [31]. The non-linear models in-

cluded Random Forest (RF) [32], Decision Tree (DT) 

[33], AdaBoost, and Gradient Boosting [34]. The da-

taset was split into a training set (70%) and a test set 

(30%). All data processing and model training were 

performed using Python 3.11.6, following the work-

flow illustrated in Fig. 1. 
  

 
Fig. 1. Flow diagram for preprocessing of FTIR spectra and  

supervised learning models 

Рис. 1. Блок-схема предварительной обработки спектров 

FTIR и контролируемых моделей обучения 

 

RESULT AND DISCUSSION   

FTIR fingerprints of Vietnamese Cinnamomum 

cassia samples 

The IR spectral signals within the range of 

4000-600 cm-1 were extracted into an Excel dataset, re-

sulting in a dataset comprising 139 samples and 1701 

columns representing intensity values. The output data 

was labeled as discrete variables: Yen Bai – YB (La-

bel: 1); Quang Ninh – Qni (Label: 2); Thanh Hoa – TH 

(Label: 3); Quang Nam – Qna (Label: 4) for the pur-

pose of constructing classification models. 

The Cinnamomum cassia samples are complex 

mixtures, with their IR spectra displaying a total overlap 

of absorption bands from various components (Fig. 2a). 

Most characteristic fingerprint peaks for Cinnamomum 

cassia are concentrated within the 1800-600 cm-1 range 

(Fig. 2a). Analysis of these peaks confirmed con-

sistency with previous studies [23]. For instance, the 

peaks at 1679 cm-1 and 1626 cm-1 correspond to the 

stretching vibrations of an aldehyde carbonyl (C=O), 

indicating high levels of cinnamaldehyde and alde-

hydes in Cinnamomum cassia’s volatile oil. The peaks 

at 1124 cm-1 and 1070 cm-1 are attributed to C=O 

stretching and C-OH deformation vibrations, while the 

peak at 685 cm-1 corresponds to alkene vibrational ab-

sorption. Despite the complexity and diversity of Cin-

namomum cassia ’s chemical composition, the spectra 
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of all samples within the 1800-600 cm-1 range exhibit 

significant similarities.  

Significant spectral noise was observed in the 

regions below 1749 cm-1 and above 3581 cm-1, and the 

data was further influenced by variations in measure-

ment conditions. Therefore, before further analysis, 

Min-Max scaling and first- and second-order Savitzky-

Golay derivative filtering were implemented to nor-

malize the spectral data for each sample. The IR spec-

tra, preprocessed using Min-Max Scaling – the most 

effective algorithm, are shown alongside the first de-

rivative (Fig. 2b) and the second derivative (Fig. 2c). 
 

 
 

a 

 
 

b 

 
 

c 
Fig. 2. IR spectra data of cinnamomum cassia with different processing techniques. (a) FTIR of 139 samples before reprocessing. (b) 

FTIR spectra after preprocessed by first derivative and Savitsky- Goley. (c) Further processed IR spectra with 2nd derivative and Savit-

sky- Goley to enhance spectra features coesdondig with 4 samples collected in 4 geographical regions 

Рис. 2. Данные ИК-спектров cinnamomum cassia с различными методами обработки. (a) ИК-спектры 139 образцов до повторной 

обработки. (b) Спектры ИК-спектров после предварительной обработки первой производной и Савицким-Голеем. (c) Дальней-

шая обработка ИК спектров со второй производной и Савицким-Голеем для улучшения характеристик спектров совместно с 4 

образцами, собранными в 4 географических регионах 

Wavelength (cm-1) 

Wavelength (cm-1) 

Wavelength (cm-1) 
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a 

 
b 

Fig. 3. HCA on the raw data (a) and first derivative spectra (b) of Cinnamomum cassia samples  

Рис. 3. HCA на необработанных данных (a) и спектрах первой производной (b) образцов Cinnamomum cassia 

 

The raw data displays the original spectra with 

distinct features but is impacted by baseline drift and 

linear trends, which obscure finer details. The first de-

rivative enhances local variations, particularly in the 

600-1000 and 2800-3000 cm-1 regions, though it also 

amplifies random noise. The second derivative fur-

ther improves sensitivity to subtle features and effec-

tively removes parabolic baseline effects, albeit with 

considerable noise amplification. Despite this, the 

second derivative remains the most effective for clas-

sification tasks. 

Exploratory Data Analysis Using Unsuper-

vised Learning for Discrimination of Cinnamomum 

cassia 

Due to the high overlap in chemical composi-

tion fingerprints, distinguishing the geographical 

origin among the 139 samples is challenging. There-

fore, applying chemometric techniques, such as hierar-

chical clustering analysis (HCA) and principal compo-

nent analysis (PCA), enhances the ability to extract 

meaningful spectral patterns, improving the classifica-

tion accuracy of Cinnamomum cassia samples based 

on their IR spectra.  

Cluster analysis of FTIR spectra of Cin-

namomum cassia   

To better visualize the relationships and ge-

netic similarities among Cinnamomum cassia samples 

from different regions, hierarchical cluster analysis 

(HCA) was conducted on the processed IR spectra of 

139 samples. The quantity and proportion of each sam-

ple type within the resulting clusters are detailed in Fig. 3 

and summarized in Table 1. These results provide in-

sights into the clustering structure and the distribution 

of sample types across different clusters. The hierar-

chical clustering diagram illustrates the hierarchical re-

lationships among samples, grouping similar samples 

into clusters. The clusters correspond to the target cat-

egories identified in the study, with each region as-

signed a specific label: Yen Bai (YB) – 1, Quang Ninh 

(QNi) – 2, Thanh Hoa (TH) – 3, and Quang Nam 

(QNa) – 4. This classification aligns with the regional 

variations in climate and environmental conditions, 

supporting the differentiation of Cinnamomum cassia 

samples based on their geographic origin. The HCA 

analysis revealed four main clusters. However, some 

clusters exhibit overlaps, particularly in cases where 

sample types share similar spectral characteristics. The 

distance between the two main groups in the raw data 

is only about 2.0, significantly lower than the 14 ob-

served with the first derivative. This substantial over-

lap between Quang Ninh and Thanh Hoa presents chal-

lenges for linear classification models such as Linear 

Discriminant Analysis (LDA) or distance-based meth-

ods in distinguishing between regions. The issue arises 
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from the raw data containing excessive redundant in-

formation and features with low discriminative power. 

Samples from Region 3 formed a distinct cluster, indi-

cating clear differentiation from other regions. Mean-

while, samples from Regions 1 and 2 clustered to-

gether, reflecting their compositional similarities. The 

final cluster primarily consisted of samples from Re-

gion 4, with a few from Region 1, suggesting a certain 

degree of overlap. 

This clustering pattern clearly indicates that 

Cinnamomum cassia samples have gradually adapted 

to their local climates and environmental conditions 

over time. As previously reported, the chemical com-

position of Cinnamomum cassia varies significantly 

with geographical proximity, leading to similar chem-

ical profiles among different species collected within 

the same region. 

Principal Components Analysis of FTIR spec-

tra of Cinnamomum cassia 

PCA was conducted on the raw spectra of cina-

mon samples indicate the cumulative explained vari-

ance of the first 20 PCs which is presented in Fig. 4(a). 

The five most significant PCs accounted for 96.52% of 

the total variation in the Cinnamomum cassia sample 

set (PC-1 = 68.97%, PC-2 = 89.14%, PC-3 = 92.76%, 

PC-4 = 94.99%, and PC-5 = 96.52%) with their cumu-

lative contribution exceeding 99.94%. In contrast, the 

first derivative, despite having a lower cumulative var-

iance (70% with 3 components and 90% with 10 com-

ponents), significantly enhances group separation by 

highlighting local variations in the spectra. As a result, 

the boundaries between regions become more distinct, 

reducing overlap between groups and improving clas-

sification performance (Fig. 5b). Meanwhile, the sec-

ond derivative does not provide substantial improve-

ment over the first derivative, with a similar cumula-

tive variance (70% with 3 components and 90% with 

10 components), but it may amplify noise due to its 

high sensitivity to errors in the original data. This re-

sults in less effective group separation compared to the 

first derivative. 

 

 
a 

Raw Data  

 
b 

First derivative spectra 
Fig. 4. Cumulative explained variance rates of first 40 PCs on the raw data (a) and (b)- first derivative spectra 

Рис. 4. Кумулятивные объясненные скорости дисперсии первых 40 ПК на необработанных данных (a) и (b) - спектры первой 

производной 
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a 

Raw Data 

 
b 

First derivative spectra 
Fig. 5. The score plot of PC-1 and PC-2 analyzing Cinnamomum cassia from different provinces based on raw data (a) and first deriva-

tive spectra (b) 

Рис. 5. График оценок ПК-1 и ПК-2, анализирующих Cinnamomum cassia из разных провинций на основе необработанных дан-

ных (a) и спектров первой производной (b) 

 

The score plots of FTIR raw data, first deriva-

tive, and second derivative indicate that the first deriv-

ative provides the most effective group separation. 

with PC-1 and PC-2 providing discrimination in the 2D 

scores plot (Fig. 5a). Cinnamomum cassia samples 

from the Quang Ninh region were distinctly clustered 

on the right axis, while many samples from the Quang 

Nam region appeared on the left of the 2D scores plot. 

However, the distribution of northeastern samples 

slightly overlapped with that of Cinnamomum cassia 

from the northern region. It achieves greater distances 

between major groups and sharper boundaries, partic-

ularly between Yen Bai and Quang Nam. However, ap-

proximately 10-15% of samples from Quang Ninh and 

Thanh Hoa remain intermixed due to their similar spec-

tral characteristics. 

Supervised learning Algorithm for original 

Classification 

The supervised learning algorithms were de-

veloped and trained on 80% of the total samples, while 

the model's performance was evaluated on the remain-

ing 20%, as described in Fig. 1 (actual number of sam-

ples in the study). 

The confusion matrix of PCA-SVM reveals its 

superior classification performance across all three da-

tasets with high density along the diagonal elements 

(where predicted labels match true labels), particularly 

for labels 0 and 8. On the no derivative and first deriv-

ative datasets, PCA-SVM accurately predicts the ma-

jority of samples for these labels while effectively min-

imizing confusion among intermediate labels such as 

1, 2, and 7. Even on the second derivative dataset, de-

spite some minor misclassifications between labels 1 

and 7, PCA-SVM maintains strong performance with la-

bel 8, demonstrating consistent classification stability. 

Table 1 

Confusion Matrix of the selected supervised learning Methods 

Таблица 1. Матрица путаницы выбранных контролируемых методов обучения 

Algorithm Raw Data First Derivative spectra Second Derivative spectra 
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Table 2 

Summary of Classification Results of the studied super-

vised learning models 

Таблица 2. Сводка результатов классификации изу-

ченных моделей контролируемого обучения 

Model 
Pre-pro-

cessing 
#PCs 

Accuracy 

(%) 

SVM 

None 35 93.75 

1st der. 28 96.88 

2nd der. 33 96.88 

GausianNB 

None 15 90.63 

1st der. 41 87.50 

2nd der. 20 84.38 

BernoulliNB 

None 36 84.38 

1st der. 10 78.13 

2nd der. 17 62.50 

RF 

None 24 93.75 

1st der. 19 81.25 

2nd der. 10 93.75 

DT 

None 8 81.25 

1st der. 8 68.75 

2nd der. 13 68.75 

AdaBoost 

None 15 81.25 

1st der. 20 68.75 

2nd der. 8 68.75 

GradientBoosting 

None 19 87.50 

1st der. 17 78.13 

2nd der. 16 93.75 

 

In contrast, PCA-GaussianNB and PCA-Ber-

noulli NB exhibit a more uniform distribution of pre-

dictions but encounter significant misclassifications, 

especially with intermediate labels like 2, 5, and 6, par-

ticularly on the second derivative dataset, where these 

labels are more frequently mispredicted.  

PCA-RF and PCA-DT also demonstrate rea-

sonable predictive power for label 8 across all datasets; 

however, they exhibit a notable tendency to confuse la-

bels 0 and 1, which undermines their overall classifi-

cation efficacy. 

Meanwhile, boosting models such as PCA-

AdaBoost and PCA-GradientBoost show improvement 

on the "Second derivative" dataset, with better predic-

tions for labels 7 and 8, but they still suffer from sub-

stantial misclassifications across other labels, notably 

on the no derivative and first derivative datasets, where 

labels 5 and 6 are frequently misclassified. 

The results, presented as accuracy (%) of the 

predicted models applied to the tested samples using 

raw data, first derivative, and second derivative FTIR 

after PCA reduction, are listed in Table 2. 

The results in Table 2 suggest that the Support 

Vector Machine (SVM) and Random Forest (RF) mod-

els exhibit strong performance, with accuracy ranging 

from 93.75% to 96.88%, due to their ability to handle 

nonlinear data. Specifically, SVM improves from 

93.75% (without preprocessing, using 35 principal 

components) to 96.88% when applying first or second 

derivatives (with 28-33 principal components). This 

improvement indicates that derivative preprocessing 

enhances spectral peaks and valleys, aiding the model 

in defining nonlinear classification boundaries more 

effectively. 

Similarly, RF maintains a stable accuracy of 

93.75%, demonstrating its robustness against prepro-

cessing variations. This stability highlights the strength 

of its ensemble decision tree mechanism in managing 

complex feature interactions, ensuring reliable classi-

fication across different preprocessing methods. 

In contrast, Naïve Bayes models, including 

GaussianNB and BernoulliNB, exhibit limited per-

formance, with accuracies ranging from 62.50% to 

90.63%. GaussianNB achieves its highest accuracy of 

90.63% without preprocessing but drops to 84.38% 

with the second derivative. This decline is due to the 

model’s assumption of a normal distribution and fea-

ture independence, which do not align with spectral 

data, where strong correlations between wavelengths 

are present. 

BernoulliNB performs even worse, with accu-

racy decreasing from 84.38% to just 62.50% when ap-

plying the second derivative. Since BernoulliNB is de-

signed for binary data, it is inherently unsuitable for 

continuous spectral data. Moreover, derivative prepro-

cessing alters the data structure, further reducing its 

class discrimination capability. 

Among boosting models, Gradient Boosting 

achieves 93.75% accuracy with the second derivative, 

outperforming AdaBoost, which reaches a maximum 

of 81.25%. This advantage is attributed to Gradient 

Boosting’s ability to directly optimize the loss function 

(typically log-loss), whereas AdaBoost primarily fo-

cuses on reweighting misclassified samples, making it 

less effective for spectral classification. 

The Decision Tree (DT) model, however, 

shows lower performance, ranging from 68.75% to 

81.25%. This is due to its tendency to overfit, particu-

larly when spectral data contains environmental or in-

strumental noise. Derivative preprocessing amplifies 

this noise, further reducing classification accuracy by 

leading to less precise decision boundaries. 

Regarding the impact of preprocessing, apply-

ing first or second derivatives benefits certain models 

like SVM and GradientBoosting by enhancing key 

spectral features, but it proves detrimental to noise-

sensitive models like DT and BernoulliNB, signifi-

cantly reducing their performance. Meanwhile, LDA 
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and RF show less dependence on preprocessing, high-

lighting their flexibility. Consequently, LDA emerges 

as the optimal choice for this problem due to its high 

performance, low computational resource demand 

(only three principal components), and stability. If 

nonlinear data processing is required, SVM is a strong 

contender, particularly when paired with derivative 

preprocessing. 

CONCLUSION   

This study demonstrates that FTIR spectros-

copy, combined with machine learning, enables effec-

tive classification of Cinnamomum cassia samples by 

geographic origin. The ATR-FTIR spectra data cou-

pled with SVM and LDA models after using reduciton 

techcniques (PCA) provided the highest classification 

accuracy (96.88%), confirming the potential of FTIR-

based authentication for Cinnamomum cassia quality 

assessment. The classification methods be the robust 

protocol which is the fast and reliable approach for 

identifying geographical origin identification of Viet-

namese Cinnamomum cassia.  
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