МЕТОД ВЭЖХ ДЛЯ ОПРЕДЕЛЕНИЯ ОСТАТКОВ НЕКОТОРЫХ АНТИБИОТИКОВ В СТОЧНЫХ ВОДАХ РАЗЛИЧНЫХ БОЛЬНИЦ В ГОРОДЕ БАГДАД, ИРАК

  • Ala’a Abdullwahid Jasim Педагогический колледж чистой науки (Ибн Аль-Хайсам)
  • Wasan Abdulwahid Jasim Педагогический колледж чистой науки (Ибн Аль-Хайсам)
  • Jasim M. S. Jamur Педагогический колледж чистой науки (Ибн Аль-Хайсам)
Ключевые слова: остатки антибиотиков, ВЭЖХ, левофлоксацин, тетрациклин, сточные воды

Аннотация

Антибиотики представляют наибольшую угрозу для почвы и водных экосистем среди различных терапевтических групп лекарств (которые включают отпускаемые по рецепту лекарства и средства для лечения рака). Сильнейшие лекарства ‒ антибиотики ‒ использовались для остановки роста микроорганизмов или их уничтожения. С помощью технологии высокоэффективной жидкостной хроматографии с флуоресцентным детектированием были определены количества левофлоксацина и тетрациклина в сточных водах трех больниц (Медикал Сити, Аль-Кинди и Аль-Ярмук). В этом исследовании были выбраны левофлоксацин и тетрациклин, поскольку они являются наиболее важными загрязнителями воды. Эти остатки антибиотиков были разделены и измерены с использованием метода градиентного элюирования на колонке с обращенной фазой C18. Комбинация метанола и деионизированной воды составляла систему подвижной фазы. Для 20-минутного периода анализа длины волн возбуждения и излучения детектора были установлены на 310 и 420 нм соответственно. Очистку картриджа ТФЭ проводили после экстракции с использованием цитратного буфера с pH 4. Прекрасные  линейные зависимости (R2 > 0,9998) наблюдались на калибровочных кривых для левофлоксацина и тетрациклина в концентрациях от 10 до 40 мкг/мл. Пределы обнаружения и количественного определения левофлоксацина и тетрациклина составили 0,61 мкг/мл, 2,04 мкг/мл, 0,46 мкг/мл и 1,54 мкг/мл соответственно. С использованием предложенной методики был успешно применен анализ остатков антибиотиков в различных пробах сточных вод. Результаты показывают наличие тетрациклина и левофлоксацина во всех пробах сточных вод. Однако в Аль-Кинди их концентрация была выше, чем в Медикал-Сити и Аль-Ярмуке. Предложенный метод может быть применен к ряду медицинских продуктов в различных источниках сточных вод, таких как больницы и промышленные предприятия.

Для цитирования:

Алаа Абдулвахид Джасим, Васан Абдулвахид Джасим, Джасим М.С. Джамур Метод ВЭЖХ для определения остатков некоторых антибиотиков в сточных водах различных больниц в городе Багдад, Ирак. Изв. вузов. Химия и хим. технология. 2024. Т. 67. Вып. 6. С. 21-28. DOI: 10.6060/ivkkt.20246706.7035.

Литература

Jasim W.A., Salman J.D., Jamur J.M.S. Flame atomic absorption spectrophotometry analysis of heavy metals in some food additives available in Baghdad markets, Iraq. Indian J. Forensic. Med. Toxicol. 2020. V. 14(2). P. 451–456.

Deguenon E., Dougnon V., Houssou V.M.C., Gbotche E., Ahoyo R.A., Fabiyi K. Hospital effluents as sources of antibiotics residues, resistant bacteria and heavy metals in Benin. SN Appl. Sci. 2022. V. 4(8). DOI: 10.1007/s42452-022-05095-9.

Cai W.W., Peng T., Zhang J.N., Hu L.X., Yang B., Yang Y.Y. Degradation of climbazole by UV/chlorine process: Kinetics, transformation pathway and toxicity evaluation. Chemosphere. 2019. V. 219. P. 243–249. DOI: 10.1016/j.chemosphere.2018.12.023.

Lu J., Wu J., Zhang C., Zhang Y., Lin Y., Luo Y. Occur-rence, distribution, and ecological-health risks of selected anti-biotics in coastal waters along the coastline of China. Sci. To-tal Environ. 2018. V. 644. P. 1469–1476. DOI: 10.1016/ j.scitotenv.2018.07.096.

Lu J., Wu J., Zhang C., Zhang Y. Possible effect of submarine groundwater discharge on the pollution of coastal water: Occurrence, source, and risks of endocrine disrupting chemicals in coastal groundwater and adjacent seawater influ-enced by reclaimed water irrigation. Chemosphere. 2020. V. 250. 126323. DOI: 10.1016/j.chemosphere.2020.126323.

Qiao M., Ying G.G., Singer A.C., Zhu Y.G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018. V. 110(July). P. 160–172. DOI: 10.1016/j.envint. 2017.10.016.

Yang B., Kookana R.S., Williams M., Ying G.G., Du J., Doan H. Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): Products identification, and toxicity evaluation. J. Hazard. Mater. 2016. V. 320(Vi). P. 296–303. DOI: 10.1016/ j.jhazmat.2016.08.040.

Zhang Q.Q., Ying G.G., Pan C.G., Liu Y.S., Zhao J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015. V. 49(11). P. 6772–6782.

Ajibola A.S., Zwiener C. Occurrence and Risk Assessment of Antibiotic Residues in Sewage Sludge of Two Nigerian Hospital Wastewater Treatment Plants. Water Air Soil Pollut. 2022. V. 233(10). DOI: 10.1007/s11270-022-05875-4.

Mohammed M.A., Abbas S.M., Jamur J.M.S. Derivative spectrophotometric determination for simultaneous estimation of isoniazid and ciprofloxacin in mixture and pharmaceutical formulation. Methods Objects Chem. Anal. 2020. V. 15(3). P. 105–110. DOI: 10.17721/moca.2020.105-110.

Abbas S.M., Jamur J.M.S., Nasif A.M. Spectrophotometric Method for the Determination of Metoclopramide in Pharmaceutical Forms. J. Appl. Spectrosc. 2021. V. 88(2). P. 433–440. DOI: 10.1007/s10812-021-01191-7.

Medvedeva I.V., Medvedeva O.M., Studenok A.G., Studenok G.A., Tseytlin E.M. New Composite Materials and Processes for Chemical, Physico-Chemical and Biochemical Technologies of Water Purification. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 1. P. 6–27. DOI: 10.6060/ivkkt.20236601.6538.

Shamar J.M. Separation and Identification of Naphthalene, Acenaphthylene, Pyrene, Benz{a} Anthracene and 1,3,2,4-Dibenzanthracene. J. Al-Nahrain Univ. Sci. 2009. V. 12(4). P. 14–24. DOI: 10.22401/JNUS.12.4.03.

Shamar J.M. Determination of some phenols in Tigris River by HPLC. Ibn Al-Haitham J. Pure Appl. Sci. 2013. 26(1). P. 250–258.

Jamur J.M.S. Optimization of Plasma Assisted Desorption / Ionization- Mass Spectrometry For Analysis Of Ibuprofen. Заводская лаборатория. Диагностика материалов. 2023. Т. 89. № 7. С. 21–24. Jamur J.M.S. Optimization of Plasma Assisted Desorption / Ionization- Mass Spectrometry For Analysis Of Ibuprofen. Zavodskaya laboratoriya. Diag-nostika materialov. 2023. V. 89. N 7. P. 21–24. DOI: 10.26896/ 1028-6861-2023-89-7-21-24.

Shamar J., Abbas S., Abbas Z. Analytical Methods for Determination of Ketoprofen Drug: A review. Ibn AL-Haitham J. Pure Appl. Sci. 2022. V. 35(3). P. 76–82. DOI: 10.30526/ 35.3.2842.

Dhangar K., Kumar M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci Total Environ. 2020. V. 738. 140320. DOI: 10.1016/j.scitotenv.2020.140320.

Valdez-Carrillo M., Abrell L., Ramírez-Hernández J., Reyes-López J.A., Carreón-Diazconti C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. Environ. Sci. Pollut. Res. 2020. V. 27(36). P. 44863–44891. DOI: 10.1007/s11356-020-10842-9.

Chaturvedi P., Shukla P., Giri B.S., Chowdhary P., Chandra R., Gupta P. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ. Res. 2021. V. 194(December 2020). 110664. DOI: 10.1016/j.envres.2020.110664.

Rathi B.S., Kumar P.S., Show P.L. A review on effective removal of emerging contaminants from aquatic systems: Cur-rent trends and scope for further research. J. Hazard. Mater. 2021. V. 409. 124413. DOI: 10.1016/j.jhazmat.2020.124413.

Uluseker C., Kaster K.M., Thorsen K., Basiry D., Shoba-na S., Jain M. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front. Microbiol. 2021. V. 12(October). DOI: 10.3389/fmicb.2021.717809.

Ortúzar M., Esterhuizen M., Olicón-Hernández D.R., González-López J., Aranda E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front. Microbiol. 2022 V. 13(April). P. 1–25. DOI: 10.3389/fmicb.2022.869332.

Gwenzi W., Kanda A., Danha C., Muisa-Zikali N., Chaukura N. Occurrence, Human Health Risks, and Removal of Pharmaceuticals in Aqueous Systems: Current Knowledge and Future Perspectives. Appl. Water Sci. Vol. 1 Fundam. Appl. 2023. V. 1. P. 63–101. DOI: 10.1002/97811 19725237.ch2.

Rodríguez-Molina D., Mang P., Schmitt H., Chifiriuc M.C., Radon K., Wengenroth L. Do wastewater treatment plants increase antibiotic resistant bacteria or genes in the environment? Syst. Rev. 2019. V. 8(1). P. 1–8. DOI: 10.1186/s 13643-019-1236-9.

Buriánková I., Kuchta P., Molíková A., Sovová K., Výravský D., Rulík M. Antibiotic resistance in wastewater and its impact on a receiving river: A case study of wwtp brnomodřice, czech republic. Water (Switzerland). 2021. V. 13(16). 2309. DOI: 10.3390/w13162309.

Fonseca E, Hernández F, Ibáñez M, Rico A, Pitarch E, Bijlsma L. Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environ. Int. 2020. V. 144(July). P. 106004. DOI: 10.1016/j.envint.2020.106004.

Tsenter I.M., Alexeev K.D., Popova S.A., Garkusheva N.M., Matafonova G.G., Batoev V.B. Efficiency of Ultravi-olet Excilamps for Simultaneous Treatment and Disinfection of Water. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 9. P. 116–122. DOI: 10.6060/ivkkt. 20236609.6820.

Kim C., Ryu H.D., Chung E.G., Kim Y., Lee J. Kwan. A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: Sample preparation, liquid chromatography, and mass spectrometry. J. Environ. Manage. 2018. V. 217. P. 629–645. DOI: 10.1016/j.jenvman.2018.04.006.

Wang J., Chu L., Wojnárovits L, Takács E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Sci. Total. Environ. 2020. V. 744. P. 140997. DOI: 10.1016/j.scitotenv.2020.140997.

Huang A., Yan M., Lin J., Xu L., Gong H., Gong H. A review of processes for removing antibiotics from breeding wastewater. Int. J. Environ. Res. Public Health. 2021. V. 18(9). 4909. DOI: 10.3390/ijerph18094909.

Nieto-Juárez J.I., Torres-Palma R.A., Botero-Coy A.M., Hernández F. Pharmaceuticals and environmental risk as-sessment in municipal wastewater treatment plants and rivers from Peru. Environ. Int. 2021. V. 155(May). 106674. DOI: 10.1016/j.envint.2021.106674.

Lopez F.J., Pitarch E., Botero-Coy A.M., Fabregat-Safont D., Ibáñez M., Marin J.M. Removal efficiency for emerging contaminants in a WWTP from Madrid (Spain) after secondary and tertiary treatment and environmental impact on the Manzanares River. Sci. Total. Environ. 2022. V. 812. 152567. DOI: 10.1016/j.scitotenv.2021.152567.

Holton E., Sims N., Jagadeesan K., Standerwick R., Kasprzyk-Hordern B. Quantifying community-wide antimi-crobials usage via wastewater-based epidemiology. J. Hazard. Mater. 2022. V. 436(January). P. 129001. DOI: 10.1016/j. jhazmat.2022.129001.

Kim C., Ryu H.D., Chung E.G., Kim Y. Determination of 18 veterinary antibiotics in environmental water using high-performance liquid chromatography-q-orbitrap combined with on-line solid-phase extraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018. V. 1084(December 2017). P. 158–165. DOI: 10.1016/j.jchromb.2018.03.038.

Zhang Y., Lin L., Li Y., Zeng Q., Guo S., Nkinahamira F. Determination of 38 pharmaceuticals and personal care products in water by lyophilization combined with liquid chroma-tography-tandem mass spectrometry. Anal. Methods. 2021. V. 13(3). P. 299–310. DOI: 10.1039/D0AY02022B.

Van Hoi B., Vu C.T., Phung-Thi L.A., Thi Nguyen T., Nguyen P.T., Mai H. Determination of Pharmaceutical Resi-dues by UPLC-MS/MS Method: Validation and Application on Surface Water and Hospital Wastewater. J. Anal. Methods Chem. 2021. Art. ID 6628285. DOI: 10.1155/2021/6628285.

Cha J.M., Yang S., Carlson K.H. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. J. Chromatogr. A. 2006. V. 1115(1–2). P. 46–57. DOI: 10.1016/j.chroma.2006.02.086.

Hernández F., Bakker J., Bijlsma L., de Boer J., Botero-Coy A.M., Bruinen de Bruin Y. The role of analytical chem-istry in exposure science: Focus on the aquatic environment. Chemosphere. 2019. V. 222. P. 564–583. DOI: 10.1016/j.chemosphere.2019.01.118.

Seifrtová M., Nováková L., Lino C., Pena A., Solich P. An overview of analytical methodologies for the determination of antibiotics in environmental waters. Analyt. Chim. Acta. 2009. V. 649. P. 158–179. DOI: 10.1016/j.aca.2009.07.031.

Abbas S.M., Jamur J.M.S., Sallal T.D. Indirect spectropho-tometric determination of mebendazole using n-bromosuccinimide as an oxidant and tartarazine dye as analytical reagent. Egypt. J. Chem. 2021. V. 64(9). P. 4913–4917.

Jamur J.M.S. Raman spectroscopy analysis for monitoring of chemical composition of aspirin after exposure to plasma flame. Spectroscopy Europe/World. 2022. V. 34(5). P. 18–22. DOI: 10.1255/sew.2022.a15.

Sadiq K.A., Mohammed S.J., Ghati S.K., Jasim M.S. Adsorption of Bromothymol Blue Dye onto Bauxite Clay. Baghdad Science Journal. 2024.

Rutten F., Jamur J., Roach P. Fast and versatile ambient surface analysis by plasma-assisted desorption/ionisation mass spectrometry. Spectrosc. Eur. 2015. V. 27(6). P. 10. DOI: 10.1255/sew.2015.a2.

Patyra E., Kwiatek K. Comparison of HPLC–DAD and LC–MS Techniques for the Determination of Tetracyclines in Medicated Feeds Using One Extraction Protocol. Chroma-tographia. 2021. V. 84(8). P. 741–749. DOI: 10.1007/s10337-021-04058-3.

de Farias D.M., de Faria L.V., Lisboa T.P., Matos M.A.C., Muñoz R.A.A., Matos R.C. Determination of levofloxacin in pharmaceutical formulations and urine at reduced graphene oxide and carbon nanotube-modified electrodes. J. Solid State Electrochem. 2020. V. 24(5). P. 1165–1173. DOI: 10.1007/s 10008-020-04589-z.

Ibraheem J.A., Muna M.S., Abdul-Ahad Y. Detection of Tetracycline, Doxycycline, Chlortetracycline, and Oxytetracy-cline Antibiotics in Nineveha Drug Wastewater. Coll. Eng. J. NUCEJ. 2012. V. 15(2). P. 215.

Patyra E., Kowalczyk E., Kwiatek K. Screening method for the determination of selected tetracyclines in water by liquid chromatography with diode array detector. Bull. Vet. Inst. Pu-lawy. 2014. V. 58(1). P. 65–70. DOI: 10.2478/bvip-2014-0010.

Di X., Zhao X., Guo X. Hydrophobic deep eutectic solvent as a green extractant for high-performance liquid chromato-graphic determination of tetracyclines in water samples. J. Sep. Sci. 2020. V. 43(15). P. 3129–3135. DOI: 10.1002/jssc. 202000477.

Qian J., Xing C., Ge Y., Li R., Li A., Yan W. Gold nanos-tarsenhanced Raman fingerprint strip for rapid detection of trace tetracycline in water samples. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2020. 232. 118146. DOI: 10.1016/ j.saa.2020.118146.

Zainab S.M., Junaid M., Xu N., Malik R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020. 187(1). P. 116455. DOI: 10.1016/j.watres.2020.116455.

Dhiman P., Rana G., Kumar A., Sharma G., Vo D.V.N., AlGarni T.S. Nanostructured magnetic inverse spinel Ni–Zn ferrite as environmental friendly visible light driven photo-degradation of levofloxacin. Chem. Eng. Res. Des. 2021. V. 175. P. 85–101. DOI: 10.1016/j.cherd.2021.08.028.

Abbaszadehbezi M., Kahkha M.R.R., Khammar A., Rabouri M.M. Application of pipettetip solid-phase extrac-tion technique for fast determination of levofloxacin from wastewater sample using cobalt metal-organic framework. Anal. Methods Environ. Chem. J. 2022. V. 5(2). P. 51–59. DOI: 10.24200/amecj.v5.i02.185.

Опубликован
2024-05-04
Как цитировать
Jasim, A. A., Jasim, W. A., & Jamur, J. M. S. (2024). МЕТОД ВЭЖХ ДЛЯ ОПРЕДЕЛЕНИЯ ОСТАТКОВ НЕКОТОРЫХ АНТИБИОТИКОВ В СТОЧНЫХ ВОДАХ РАЗЛИЧНЫХ БОЛЬНИЦ В ГОРОДЕ БАГДАД, ИРАК. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 67(6), 21-28. https://doi.org/10.6060/ivkkt.20246706.7035
Раздел
ХИМИЯ неорганич., органич., аналитич., физич., коллоидная, высокомол. соединений