ВЫСШИЕ ВОДОРОСЛИ В КАЧЕСТВЕ СОРБЦИОННЫХ МАТЕРИАЛОВ ДЛЯ ЛИКВИДАЦИИ РАЗЛИВОВ УГЛЕВОДОРОДОВ НА ВОДНОЙ ПОВЕРХНОСТИ (ОБЗОР ЛИТЕРАТУРЫ)

  • Ildar G. Shaikhiev Казанский национальный исследовательский технологический университет
  • Vladislav O. Dryakhlov Казанский национальный исследовательский технологический университет
  • Zemfira T. Sanatullova Казанский национальный исследовательский технологический университет
  • Aydar M. Zainullin Казанский национальный исследовательский технологический университет
  • Almira M. Madyakina Казанский национальный исследовательский технологический университет
  • Sergey N. Savelyev Казанский национальный исследовательский технологический университет
  • Olga D. Arefieva Дальневосточный федеральный университет
  • Olga V. Nesterova Дальневосточный федеральный университет
Ключевые слова: нефть, нефтепродукты, морские и пресноводные водоросли, удаление

Аннотация

Нефть играет очень важную роль в хозяйственной деятельности человека, однако является потенциальным источником загрязнения окружающей среды. Поддержание устойчивости экосистем, соответственно, благополучия населения заключается в повышении эффективности природоохранных мероприятий. Внедрение инновационных энерго- и ресурсосберегающих технологий очистки сточных вод позволит снизить антропогенную нагрузку на водные среды. В промышленности недостаточно очищенная от углеводородов вода подвергается многократному разбавлению до нормативных требований, либо хранится в течение длительного времени в резервуарах, хранилищах или нефтяных амбарах. Поступление воды, загрязненной нефтью и нефтепродуктами, в объекты окружающей среды приводит к деградации биоценозов и к изменениям физико-химических свойств их ареала обитания. На основании вышеизложенного обобщены сведения из отечественных и зарубежных литературных источников по использованию высушенной биомассы макроводорослей в качестве сорбционных материалов для удаления нефти и нефтепродуктов из морской воды, и пресноводных водоемов. Приведены сведения по физиологии некоторых видов и родов морских водорослей, исследованных в качестве биосорбентов углеводородов, и местам их ареала произрастания в водной среде. Показано, что бурые, зеленые и красные водоросли различных видов могут эффективно извлекать нефть, компоненты нефти и продукты ее переработки из водных сред. Сделан вывод, что огромные объемы биомассы макрофитов, высокие темпы роста биомассы морских водорослей, высокая эффективность извлечения различных углеводородов делают перспективными дальнейшие исследования по использованию морских водорослей для извлечения нефти и продуктов ее переработки из соленых и пресноводных водоемов.

Для цитирования:

Шайхиев И.Г., Дряхлов В.О., Санатуллова З.Т., Зайнуллин А.М., Мадякина А.М., Савельев С.Н., Арефьева О.Д., Нестерова О.В. Высшие водоросли в качестве сорбционных материалов для ликвидации разливов углеводородов на водной поверхности (обзор литературы). Изв. вузов. Химия и хим. технология. 2025. Т. 68. Вып. 4. С. 6-19. DOI: 10.6060/ivkkt.20256804.7079.

Литература

Mukhutdinov A.A., Boroznov N.I., Petrov B.G., Mukhutdinova T.Z., Shayakhmetov D.K. Fundamentals and management of industrial ecology. Kazan: Magarif. 1998. 404 p. (in Russian).

Emenike E.C., Adeleke J., Iwuozor K.O., Ogunniyi S., Adeyanju C.A., Amusa V.T., Okoro H.K., Adeniyi A.G. Adsorption of crude oil from aqueous solution: A review. J. Water Process Eng. 2022. V. 50. P. 103330. DOI: 10.1016/j.jwpe.2022.103330.

Oliveira L.M.T.M., Saleem J., Bazargan A., Duarte J.L.D.S., McKay G., Meili L. Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. J. Hazard. Mater. 2021. V. 407. P. 124842. DOI: 10.1016/j.jhazmat.2020.124842.

Sanatullova Z.T., Shaikhiev I.G. Investigation of the process of desorption of oil-saturated waste of feit pro-duction. IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 815. Р. 012013. DOI: 10.1088/1755-1315/815/1/012013.

Zainullin A.M., Truhan O.V., Khusainov R.M. Some features of the synthesis and coagulation treatment wastewater from the TNRS production. IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 815. P. 012033. DOI: 10.1088/1755-1315/815/1/012033.

Zainullin A.M. Increasing the environmental safety of the initiating explosives production. IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 815. P. 012005. DOI: 10.1088/1755-1315/815/1/012005.

Romanova S.M., Madyakina A.M. Utilization of Industrial Waste from Enterprises Producing Energy-Saturated Materials by the Chemical Method. Russ. J. Gen. Chem. 2022. V. 92. N 13. P. 3085–3092. DOI: 10.1134/s1070363222130096.

Romanova S.M., Madyakina A.M. Application of wastes productions of energy-saturated substances in re-ceiving civil products. IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 815. P. 012031. DOI: 10.1088/1755-1315/815/1/012031.

Savelyev S.N., Savelyeva A.V., Dryakhlov V.O., Anamova R.R. Studying the extraction of heavy-metal ions from galvanic wastewater by reagent method. IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 815. P. 012017. DOI: 10.1088/1755-1315/815/1/012017.

Savelyev S.N., Savelyeva A.V., Fridland S.V., Anamova R.R. Integrated sulfide alkali wastewater treatment using spent galvanic solutions. IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 815. P. 012035. DOI: 10.1088/1755-1315/815/1/012035.

Fazullin D.D., Fazullina L.I., Mavrin G.V., Shaikhiev I.G., Dryakhlov V.O. Composite Membranes with Cellu-lose Acetate Surface Layer for Water Treatment. Inorg. Mater.: Appl. Res. 2021. V. 12. N 5. P. 1229-1235. DOI: 10.1134/S2075113321050105.

Fazullin D.D., Mavrin G.V., Dryakhlov V.O., Fazullina L.I., Shaikhiev, I.G., Golovnina E.A. Parameters of Household Wastewater Treatment Using Composite Membranes with a Surface Layer of Cellulose Acetate. Membr. Membr. Technol. 2021. V. 3. N 6. P. 419-425. DOI: 10.1134/S2517751621060032.

Ouyang D., Lei X., Zheng H. Recent Advances in Biomass-Based Materials for Oil Spill Cleanup. Nanomateri-als. 2023. V. 13. N 3. P. 620. DOI: 10.3390/nano13030620.

Fouladi M., Kavousi Heidari M., Tavakoli O. Development of porous biodegradable sorbents for oil/water separation: a critical review. J. Porous Mater. 2023. V. 30. N 3. P. 1037-1053. DOI: 10.1007/s10934-022-01385-0.

Hoang A.T., Nguyen X.P., Duong X.Q., Huynh T.T. Sorbent-based devices for the removal of spilled oil from water: a review. Environ. Sci. Pollut. Res. 2021. V. 28. N 11. P. 28876-28910. DOI: 10.1007/s11356-021-13775-z.

Zhang T., Li Z., Lü Y., Liu Y., Yang D., Li Q., Qiu F. Recent progress and future prospects of oil-absorbing ma-terials. Chin. J. Chem. Eng. 2019. V. 27. N 6. P. 1282-1295. DOI: 10.1016/j.cjche.2018.09.001.

Sirotkina Ye.E., Novoselova L.Yu. Materials for adsorption purification of water from oil and petroleum prod-ucts. Khim. Interesakh Ustoichivogo Razvitiya. 2005. V. 13. N 3. P. 359-377 (in Russian).

Krasnoperova S.A. Evaluation of the effectiveness of sorbents used to remove oil and petroleum prod-ucts.Upravl. Tekhnosf. 2021. V. 4. N 4. P. 413-423 (in Russian). DOI: 10.34828/UdSU.2021.83.79.007.

Turyanskii V.A. The use of plant sorbents in oil spill response. Coll. of. abst. The science of the young is the science of the future. Petrozavodsk. 2023. P. 239-249.

Kamenshchikov F.A., Bogomolnii Ye.I. Oil sorbents. M., Izhevsk: Regul. Khaot. Dinamika. 2005. 268 p. (in Rus-sian).

Li H., Liu L., Yang F. Oleophilic Polyurethane Foams for Oil Spill Cleanup. Procedia Environ. Sci. 2013. V. 18. P. 528-533. DOI: 10.1016/j.proenv.2013.04.071.

Li H., Liu L., Yang F. Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar. Pollut. Bull. 2012. V. 64. N 8. P. 1648-1653. DOI: 10.1016/j.marpolbul.2012.05.039.

Song S.F., Wang C., Fu Z.S., Fan Z.Q. Highly branched polyethylene used as sorbents for oil‐spill cleanup and separation. J. Polym. Sci. (Hoboken, NJ, U.S.). 2022. V. 60. N 15. P. 2418-2427. DOI: 10.1002/pol.20210950.

Shojaei N., Aminsharei F., Ahangar A.H. Application of hydrophobic polymers as solidifiers for oil spill cleanup. Int. J. Environ. Sci. Technol. 2021. V. 18. N 6. P. 1419-1424. DOI: 10.1007/s13762-020-02882-y.

Wei Q.F., Mather R.R., Fotheringham A.F., Yang R.D. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar. Pollut. Bull. 2003. V. 46. N 6. P. 780-783. DOI: 10.1016/S0025-326X(03)00042-0.

Zhou X., Wang F., Ji Y., Chen W., Wei J. Fabrication of Hydrophilic and Hydrophobic Sites on Polypropylene Nonwoven for Oil Spill Cleanup: Two Dilemmas Affect-ing Oil Sorption. Environ. Sci. Technol. 2016. V. 50. N 7. P. 3860-3865. DOI: 10.1021/acs.est.5b06007.

Chau M.Q., Truong T.T., Hoang A.T., Le T.H. Oil spill cleanup by raw cellulose-based absorbents: a green and sustainable approach. Energ. Source. Part. A. 2021. P. 1-14. DOI: 10.1080/15567036.2021.1928798.

Wang M., Tsai H.S., Zhang C., Wang C., Ho S.H. Effective purification of oily wastewater using lignocellulosic biomass: A review. Chin. Chem. Lett. 2022. V. 33. N 6. P. 2807-2816. DOI: 10.1016/j.cclet.2021.11.060.

Kamel S., El-Sakhawy M. Using of agricultural residue in removing of oil spill. Res. Rev. BioSci. 2011. V. 5. N 2. P. 64-70.

Zamparas M., Tzivras D., Dracopoulos V., Ioannides T. Application of Sorbents for Oil Spill Cleanup Focusing on Natural-Based Modified Materials: A Review. Molecules. 2020. V. 25. N 19. P. 4522. DOI: 10.3390/molecules25194522.

Nguyen T.T., Loc N.D., Van Nam T. Modified methods of oil cleanup with cellulose–based adsorbents: a review. Vietnam J. Hydrometeorol. 2023. V. 14. P. 96-120. DOI: 10.36335/VNJHM.2023(14).96-120.

Akinyemi O.P. Recent Development on Treatment of Crude Oil Contaminated Water Using Agricultural Waste – A Review. Int. J. Eng. Manag. Res. 2020. V. 10. N 3. P. 89-92. DOI: 10.31033/ijemr.10.3.14.

Hubbe M.A., Rojas O.J., Fingas M., Gupta B.S. Cellu-losic Substrates for Removal of Pollutants from Aqueous System: A Review. 3. Spilled Oil and Emulsified Organic Liquids. BioResources. 2013. V. 8. N 2. P. 3038-3097. DOI: 10.15376/biores.8.2.3038-3097.

El-Din G.A., Amer A.A., Malsh G., Hussein M. Study on the use of banana peels for oil spill removal. Alexan-dria Eng. J. 2017. V. 57. N 3. P. 2061-2068. DOI: 10.1016/j.aej.2017.05.020.

Wolok E., Barafi J., Joshi N., Girimonte R., Chakraborty S. Study of bio-materials for removal of the oil spill. Arabian J. Geosci. 2020. V. 13. N 23. 1244. DOI: 10.1007/s12517-020-06244-3.

Shaikhiev I.G., Khasanshina E.M., Abdullin I.Sh., Stepanova S.V. The influence of plasma treatment of flax-seeds on the removal of Devonian oil spills from the water surface and hydrophobic characteristics. Vest. Kazan Technol. Univ. 2011. N 8. P. 165-171 (in Russian).

Denisova T.R., Mavrin G.V., Sippel I.Y., Kuznetsova N.P., Shaikhiev I.G. The influence of ash tree sawdust acid treatment on the removal of crude oil from water surfaces. Res. J. Pharm. Biol. Chem. Sci. 2016. V. 7. N 5. P. 1742-1750.

Rudovica V., Rotter A., Gaudêncio S.P., Novoveská L., Akgül F., Akslen-Hoel L.K., Alexandrino D.A.M., Anne O., Arbidans L., Atanassova M., Bełdowska M., Bełdowski J., Bhatnagar A., Bikovens O., BistersV., Carvalho M.F., Catalá T.S., Dubnika A., Erdogan A., Ferrans L., Haznedaroglu B.Z., Setyobudi R.H., Graca B., Grinfelde I., Hogland W., Ioannou E., Jani Y., Kataržyte M., Kikionis S., Klun K., Kotta J., Kriipsalu M., Labidi J., Bilela L.L., Martínez-Sanz M., Oliveira J., Ozola-Davidane R., Pilecka-Ulcugaceva J., Pospis-kova K., Rebours C., Roussis V., López-Rubio A., Sa-farik I., Schmieder F., Stankevica K., Tamm T., Tasdemir D., Torres C., Varese G.C., Vincevica-Gaile Z., Zekker I., Burlakovs J. Valorization of marine waste: use of industrial byproducts and beach wrack towards the production of high added-value products. Front. Mar. Sci. 2021. V. 8. P. 723333. DOI: 10.3389/fmars.2021.723333.

Raja K., Kadirvel V., Subramaniyan T. Seaweeds, an aquatic plant-based protein for sustainable nutrition - A review. Future Foods. 2022. V. 5. P. 100142. DOI: 10.1016/j.fufo.2022.100142.

Farghali M., Mohamed I.M., Osman A.I., Rooney D.W. Seaweed for climate mitigation, wastewater treatment, bi-oenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. Environ. Chem. Lett. 2023. V. 21. N 1. P. 97-152. DOI: 10.1007/s10311-022-01520-y.

Lourenço-Lopes C., Fraga-Corral M., Jimenez-Lopez C., Pereira A.G., Garcia-Oliveira P., Carpena M., Prieto M.A., Simal-Gandara J. Metabolites from macroalgae and its applications in the cosmetic industry: A circular economy approach. Resources. 2020. V. 9. N 9. P. 101. DOI: 10.3390/resources9090101.

Lakshmi D.S., Sankaranarayanan S., Gajaria T.K., Li G., Kujawski W., Kujawa J., Navia R. A Short review on the Valorization of Green Seaweeds and Ulvan: FEEDSTOCK for chemicals and biomaterials. Biomolecules. 2020. V. 10. N 7. P. 991. DOI: 10.3390/biom10070991.

Thangavel P., Sridevi G. Environmental Sustainability. Role of Green Technologies. India: Springer. 2015. 327 p. DOI: 10.1007/978-81-322-2056-5.

Umamaheswari J., Rajamanickam R., Vilvanathan S., Shanthakumar S., Venkateswarlu K., Abinandan S., Megharaj M. Removal of heavy metals and organic pollutants by marine microalgae. Marine Organisms: A Solu-tion to Environmental Pollution? Uses in Bioremediation and in Biorefinery. Springer Internat. Publ. 2023. P. 29-64. DOI: 10.1007/978-3-031-17226-7_3.

Vahabisani A., An C. Use of biomass-derived adsorbents for the removal of petroleum pollutants from water: a mini-review. Environ. Syst. Res. 2021. V. 10. N 1. P. 1-10. DOI: 10.1186/s40068-021-00229-1.

Tripathy A., More R.D., Gupta S., Samuel J., Singh J., Prasad R. Present and Future Prospect of Algae: A Poten-tial Candidate for Sustainable Pollution Mitigation. Open Biotechnol. J. 2021. V. 15. N 1. P. 142-156. DOI: 10.2174/1874070702115010142.

Ansar S.K.B., Kavusi E., Dehghanian Z., Pandey J., Lajayer A.B., Price G.W., Astatkie T. Removal of organic and inorganic contaminants from the air, soil, and water by algae. Environ. Sci. Pollut. Res. 2022. V. 30. P. 116538-116566. DOI: 10.1007/s11356-022-21283-x.

Wang S., Zhao S., Uzoejinwa B.B., Zheng A., Wang Q., Huang J., Abomohra A.E.F. A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. Energy Convers. Manag. 2020. V. 222. P. 113253. DOI: 10.1016/j.enconman.2020.113253.

Arumugam N., Chelliapan S., Kamyab H., Thirugnana S., Othman N., Nasri N.S. Treatment of Wastewater Us-ing Seaweed: A Review. Int. J. Environ. Res. Public Health. 2018. V. 15. N 12. P. 2851. DOI: 10.3390/ijerph15122851.

Davis T.A., Volesky B., Mucci A. A review of the bio-chemistry of heavy metal biosorption by brown algae. Water Res. 2003. V. 37. N 18. P. 4311-4330. DOI: 10.1016/S0043-1354(03)00293-8.

Ben Jmaa S., Kallel A. Assessment of Performance of Posidona Oceanica (L.) as Biosorbent for Crude Oil-Spill Cleanup in Seawater. BioMed Res. Int. 2019. P. 6029654. DOI: 10.1155/2019/6029654.

Restaino O.F., Giosafatto C.V.L., Mirpoor S.F., Cammarota M., Hejazi S., Mariniello L., Schiraldi C., Porta R. Sustainable Exploitation of Posidonia Oceanica Sea Balls (Egagropili): A Review. Int. J. Mol. Sci. 2023. V. 24. N 8. P. 7301. DOI: 10.3390/ijms24087301.

Ben Jmaa S., Kallel A. Chemically Treated Seagrass Fibers as Biosorbent for Crude Oil Removal. New Prosp. Environ. Geosci. Hydrogeosci. 2022. P. 325-328. DOI: 10.1007/978-3-030-72543-3_73.

Boleydei H., Mirghaffari N., Farhadian O. Comparative study on adsorption of crude oil and spent engine oil from seawater and freshwater using algal biomass. Envi-ron. Sci. Pollut. Res. 2018. V. 25. N 21. P. 21024-21035. DOI: 10.1007/s11356-018-2281-y.

Shi K., Li N., Qiao Y., Jiang Q., Xue J., Wang M., Huang G. Efficiently remove of diesel oil pollutants in the marine environment by a novel biological-C14H32O3Si-Enteromorpha: Preparation, mechanism, and application. J. Environ Chem. Eng. 2022. V. 10. N 5. P. 108281. DOI: 10.1016/j.jece.2022.108281.

Ferreira R.M., Campista, A.L.D.M., Stapelfeldt D.M.A., Moreira M. de F.R. Emulsified oil separation by bioadsorption: a sustainable proposal. Environ. Tech-nol. 2022. V. 43. N 5. P. 696-708. DOI: 10.1080/09593330.2020.1801852.

Navarro A.E., Portales R.F., Sun-Kou M.R., Llanos B.P. Effect of pH on phenol biosorption by marine sea-weeds. J. Hazard. Mater. 2008. V. 156. N 1-3. P. 405-411. DOI: 10.1016/j.jhazmat.2007.12.039.

Navarro A.E., Lazo J.C., Cuizano N.A., Sun-Kou M.R., Llanos B.P. Insights into Removal of Phenol from Aqueous Solutions by Low Cost Adsorbents: Clays Versus Algae. Sep. Sci. Technol. 2009. V. 44. N 11. P. 2491-2509. DOI: 10.1080/01496390903012197.

Navarro A.E., Hernandez-Vega A., Masud M.E., Roberson L.M., Diaz-Vázquez L.M. Bioremoval of Phenol from Aqueous Solutions Using Native Caribbean Sea-weed. Environments. 2016. V. 4. N 1. P. 1-14. DOI: 10.3390/environments4010001.

Davis D., Simister R., Campbell S., Marston M., Bose S., McQueen-Mason S.J., Gomez L.D., Gallimore W.A., Tonon T. Biomass composition of the golden tide pelagic seaweeds Sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways. Sci. Total Environ. 2021. V. 762. P. 143134. DOI: 10.1016/j.scitotenv.2020.143134.

Saldarriaga-Hernandez S., Nájera-Martínez E.F., Mar-tínez-Prado M.A., Melchor-Martínez E.M. Sargassum-based potential biosorbent to tackle pollution in aqueous ecosystems - An overview. Case Stud. Chem. Environ. Eng. 2020. V. 2. P. 100032. 1-5. DOI: 10.1016/j.cscee.2020.100032.

Saldarriaga-Hernandez S., Hernandez-Vargas G., Iq-bal H.M., Barcelo D., Parra-Saldívar R. Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach. Sci. To-tal Environ. 2020. V. 715. P. 136978. DOI: 10.1016/j.scitotenv.2020.136978.

Navarro A.E., Cuizano N.A., Lazo J.C., Sun-Kou M.R., Llanos B.P. Comparative study of the removal of phenolic compounds by biological and non-biological adsorbents. J. Hazard. Mater. 2009. V. 164. N 2-3. P. 1439-1446. DOI: 10.1016/j.jhazmat.2008.09.077.

Rubín E., Rodríguez P., Herrero R., Sastre de Vicente M.E. Biosorption of phenolic compounds by the brown alga Sargassum muticum. J. Chem. Technol. Biotechnol. 2006. V. 81. N 7. P. 1093-1099. DOI: 10.1002/jctb.1430.

Rodriguez-Hernandez M.C., Flores-Chaparro C.E., Rangel-Mendez J.R. Influence of dissolved organic mat-ter and oil on the biosorption of BTEX by macroalgae in single and multisolute systems. Environ. Sci. Pollut. Res. 2017. V. 24. N 80. P. 20922-20933. DOI: 10.1007/s11356-017-9672-3.

Flores-Chaparro C.E., Ruiz L.F.C., de la Torre M.C.A., Huerta-Diaz M.A., Rangel-Mendez J.R. Biosorption removal of benzene and toluene by three dried macroalgae at different ionic strength and temperatures: Algae biochemical composition and kinetics. J. Environ. Manage. 2017. V. 193. P. 126-135. DOI: 10.1016/j.jenvman.2017.02.005.

Flores-Chaparro C.E., Rodriguez-Hernandez M.C., Chazaro-Ruiz L.F., Alfaro-De la Torre M.C., Huerta-Diaz M.A., Rangel-Mendez J.R. Chitosanmacroalgae biocomposites as potential adsorbents of water-soluble hydrocarbons: Organic matter and ionic strength effects. J. Cleaner Prod. 2018. V. 197. P. 633-642. DOI: 10.1016/j.jclepro.2018.06.200.

Chung M.K., Tsui M.T., Cheung K.C., Tam N.F., Wong M.H. Removal of aqueous phenanthrene by brown sea-weed Sargassum hemiphyllum: Sorptionkinetic and equilibrium studies. Sep. Purif. Technol. 2007. V. 54. N 3. P. 355-362. DOI: 10.1016/j.seppur.2006.10.008.

Zhang D., Ran C., Yang Y., Ran Y. Biosorption of phe-nanthrene by pure algae and field-collected planktons and their fractions. Chemosphere. 2013. V. 93. N 1. P. 61-68. DOI: 10.1016/j.chemosphere.2013.04.068.

Zhang C., Lu J., Wu J. Adsorptive removal of polycyclic aromatic hydrocarbons by detritus of green tide algae deposited in coastal sediment. Sci. Total Environ. 2019. V. 670. P. 320-327. DOI: 10.1016/j.scitotenv.2019.03.296.

Akl F.M., Ahmed S.I., El-Sheekh M.M., Makhlof M.E. Bioremediation of n-alkanes, polycyclic aromatic hydro-carbons, and heavy metals from wastewater using seaweeds. Environ. Sci. Pollut. Res. 2023. V. 30. N 47. P. 104814-104832. DOI: 10.1007/s11356-023-29549-8.

Zhang D., Ran Y., Cao X., Mao J., Cui J., Schmidt-Rohr K. Biosorption of nonylphenol by pure algae, field-collected planktons and their fractions. Environ. Pollut. 2015. V. 198. P. 61-69. DOI: 10.1016/j.envpol.2014.12.020.

Zhang C., Lu J., Wu J. Enhanced removal of phenolic endocrine disrupting chemicals from coastal waters by in-tertidal macroalgae. J. Hazard Mater. 2021. V. 411. P. 125105. DOI: 10.1016/j.jhazmat.2021.125105.

Yavari S., Malakahmad A., Sapari N.B. A Review on Phytoremediation of Crude Oil Spills. Water, Air, Soil Pollut. 2015. V. 226. N 47. P. 1-18. DOI: 10.1007/s11270-015-2550-z.

Wei Z., Van Le Q., Peng W., Yang Y., Yang H., Gu H., Lam S.S., Sonne C. A review on phytoremediation of contaminants in air, water and soil. J. Hazard Mater. 2021. V. 403. P. 123658. DOI: 10.1016/j.jhazmat.2020.123658.

Luqman M., Butt T.M., Tanvir A., Atiq M., Hussan M.Z.Y., Yaseen M. Phytoremediation of polluted water by tress: A review. Afr. J. Agric. Res. 2013. V. 8. N 17. P. 1591-1595. DOI: 10.5897/AJAR11.1111.

Mustafa H.M., Hayder G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. 2021. V. 12. N 1. P. 355-365. DOI: 10.1016/j.asej.2020.05.009.

Rezania S., Ponraj M., Talaiekhozani A., Mohamad S.E., Din M.F.M., Taib S.M., Sabbagh F., Sairan F.M. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollu-tants in wastewater. J. Environ. Manag. 2015. V. 163. P. 125-133. DOI: 10.1016/j.jenvman.2015.08.018.

Abdullah S.R.S., Al-Baldawi I.A., Almansoory A.F., Purwanti I.F., Al-Sbani N.H., Sharuddin S.S.N. Plantassisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere. 2020. V. 247. P. 125932. DOI: 10.1016/j.chemosphere.2020.125932.

Ekperusi A.O., Sikoki F.D., Nwachukwu E.O. Phytore-mediation of Petroleum Hydrocarbons in Polluted Waters Using Pistia Stratiotes: Gaps and Future Perspective. SPE Nigeria Annual Internat. Conf. and Exhibition. 2018. P. SPE-193527. P. 1-17. DOI:10.2118/193527-MS.

Voskoboinikov G.M., Ryzhik I.V., Salakhov D.O., Metelkova L.O., Zhakovskaya Z.A., Lopushanskaya E.M. Absorption and Conversion of Diesel Fuel by the Red Alga Palmaria palmata (Linnaeus) F. Weber et D. Mohr, 1805 (Rhodophyta): The Potential Role of Alga in Bioremediation of Sea Water. Russ. J. Mar. Biol. 2020. V. 46. N 2. P. 113-118. DOI: 10.1134/S1063074020020108.

Belyy V.A., Sverguzova S.V., Shaikhiev I.G., Sapronova Z.A., Voronina Y.S. Extraction of methylene blue dye from biomass solutions of sycamore sawdust. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 5. P. 139-145 DOI: 10.6060/ivkkt.20236605.6757.

Suprunchuk V.E. Creation and properties of biocompo-site nanoparticles based on fucoidan as carriers of fibri-nolytic enzyme. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 5. P. 87-95. DOI: 10.6060/ivkkt.20236605.6680.

Опубликован
2025-02-12
Как цитировать
Shaikhiev, I. G., Dryakhlov, V. O., Sanatullova, Z. T., Zainullin, A. M., Madyakina, A. M., Savelyev, S. N., Arefieva, O. D., & Nesterova, O. V. (2025). ВЫСШИЕ ВОДОРОСЛИ В КАЧЕСТВЕ СОРБЦИОННЫХ МАТЕРИАЛОВ ДЛЯ ЛИКВИДАЦИИ РАЗЛИВОВ УГЛЕВОДОРОДОВ НА ВОДНОЙ ПОВЕРХНОСТИ (ОБЗОР ЛИТЕРАТУРЫ). ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 68(4), 6-19. https://doi.org/10.6060/ivkkt.20256804.7079
Раздел
Обзорные статьи