OXIDATIVE EPOXIDATION OF OLEOX AND VEGETABLE OILS
Abstract
We have studied the oxidative epoxidation product of ethoxylated oleic acid (oleox) and tonnage vegetable oils: sunflower, corn, rapeseed and flax. The oxidation was carried out using hydrogen peroxide, peracetic acid and performic, which were obtained in situ using the appropriate acids and concentrated aqueous solution of hydrogen peroxide. The kinetics of oxidation was evaluated on the accumulation of the peroxide compounds, the iodine value and the number of refractive index. The final oxidation products were examined for the content of epoxy and aldehyde groups. It was shown that at the epoxidation of oleox with superoxide acids the intermediates of formic acid formed and loss faster than similar products of acetic acid. It is reflected on the character of changes in the values of iodine and peroxide value at the initial step of the process. As a result of the decomposition of the hydroperoxide derivatives the oleox aldehydes and epoxides are formed. The total content of oxidation products is changed from 3.71 to 3.84 %. It was experimentally shown that the oleox oxidation at temperatures of 55 and 65 °C did not substantially affect the dynamics of change in the number of iodine. The content of aldehyde groups in the oxidation products obtained at these temperatures is reduced. It was concluded that the oleox oxidation necessary to carry out at temperatures above 45-50 °C. It allows to obtaine the maximum content of reactive groups in the modified product. At vegetable oils oxidation study, it was found that the linseed oil has the highest oxidation rate, which contains the greatest amount of linolenic acid (46%), that probably initiates the oxidation processes. The degree of epoxidation of vegetable oils is much lower than that of oleox, probably due to a high degree of oxidation of unsaturated bonds in oils containing large amounts of polyunsaturated acids, which are the "catalysts" of the oxidation process. Relatively high levels of aldehyde and epoxy groups in sunflower oil oxidation products allows us to speak about the prospects of getting on its base materials for tanning fat.
Forcitation:
Chursin V.I. Oxidative epoxidation of oleox and vegetable oils. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60.
N 3. P. 83-89.
References
Afanasieva R.J., Аfonskaya N.S., Bernstein М.М. Reference book on leather (row materials). М.: Legkaya i pishchevaya promyshlennost. 1984. 384 p. (in Russian).
Biermann U., Friedt W., Lang S., Lühs W., Machmüller G., Metzger J.O., Rüsch Gen Klaas M., Schäfer H.J., Schneider M.P. New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew. Chem. Int. Ed. Engl. 2000. V. 39. N 13. P. 2206–2224. DOI: 10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P.
Metzger J.O, Bornscheuer U. Lipids as renewable resources: current state of chemical and biotechnological conversion and di-versification. Appl. Microbiol. Biotechnol. 2006. V. 71(1). P. 13-22. DOI: 10.1007/s00253-006-0335-4.
Hong L.K., Yusop R.M., Salih N., Salimon J. Optimization of the in situ epoxidation of linoleic acid of jatropha curcas oil with performic acid. Malaysian J. Anal. Science. 2015. V. 19. N 1. P. 144-154
Yurkova I.L. Free-radicals reactions of glycerol and sphagnophospholipides. Uspekhi Khim. 2012. V. 81. N 2. P. 175-190 (in Russian). DOI: 10.1070/RC2012v081n02ABEH004205.
Zolochevskiy V.Т. Oil oxidation at treatment oil seeds and oil storage. Masla i zhiry. 2008. N 11. P. 22-26 (in Russian).
Arutyunyan N.S., Korneva E.P., Martovchshyuk E.V., Mosyan A.K. Laboratory practical works on fat chemistry. SPb.: GIORD. 2004.264 p. (in Russian).
GOST 12497-78. Plastics. Methods of determination of epoxy groups. (in Russian).
Campanella A., Baltanas M.A. Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems. Latin Amer. Appl. Res. 2005. N 5. P.211-216
Fekarunhabo G.K., Obomanu F.G. Effects of shont-term exposure to sunlight on the qualite of some edible vegetable oils. Res. Jour. Appl. Science. 2009. V. 4. N 5. P. 152-156.