ЦИКЛИЧЕСКИЙ БУТИЛЕНТЕРЕФТАЛАТ И ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ ЕГО ИСПОЛЬЗОВАНИЯ

  • Nikolay A. Chukov ООО «Макполимер»
  • Muslim A. Mikitaev ООО «Макполимер»
  • Mukhamed Kh. Ligidov Кабардино-Балкарский государственный университет имени Х.М. Бербекова
  • Musa T. Bashorov Кабардино-Балкарский государственный университет имени Х.М. Бербекова
  • Vladimir N. Shogenov Кабардино-Балкарский государственный университет имени Х.М. Бербекова
  • Sergey I. Pakhomov Национальный исследовательский ядерный университет «МИФИ»
Ключевые слова: циклический бутилентерефталат, полимеризованный циклический бутилентерефталат, полимеризация с открытием цикла, композит, нанокомпозиты

Аннотация

Благодаря своим уникальным характеристикам циклический бутилентерефталат находит применения в новейших разработках химической промышленности. В этой статье представлен обзор последних достижений в области переработки, структуры, свойств циклического бутилентерефталата, его физической и химической модификации, а также композитов и нанокомпозитов на его основе. В последнее время большой научный интерес вызывают олигомеры циклического бутилентерефталата. Они могут быть получены с помощью реакции циклодеполимеризации и использованы в качестве сырья для полимеризации с раскрытием их цикла. Такой метод полимеризации имеет ряд преимуществ перед обычными методами получения полиэфиров. Основными такими преимуществами являются возможность проведения этого процесса при атмосферном давлении, низкая температура, отсутствие побочных эффектов реакции и получение на выходе уже сформированного изделия.

Уникальные свойства циклического бутилентерефталата делают его перспективным материалом для использования в качестве матрицы для различных нано-, микрокомпозитов, и суперконцентратов. В данной работе рассмотрены примеры применения цПБТ в качестве основы суперконцентрата таких наполнителей, как углеродные нанотрубки, слоистые силикаты, углеволокно и стекловолокно. В большинстве рассмотренных работ введение наноразмерных наполнителей в цПБТ приводит к повышению механических характеристик. В случае использования в качестве наполнителей углеволокна и стекловолокна исследуется возможность замены термореактивных смол на цПБТ. Это позволит повысить технологичность изготовления угле- и стеклопластиков и расширить области их применения.

            Циклический полибутилентерефталат может быть использован в качестве модификатора вязкости для синтетических каучуков. При этом он может одновременно играть роль как пластификатора, так и усиливающего агента.

 

Для цитирования:

Чуков Н.А., Микитаев М.А., Лигидов М.Х., Башоров М.Т., Шогенов В.Н., Пахомов С.И. Циклический бутилентерефталат и перспективные направления его использования. Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 7. С. 4-13.

Литература

Ross S.D., Cobur E.R., Leach W.A., Robinson W.B. Iso-lation of a cycle trimer from polyethylene terephthalate film. J. Polymer Sci. 1954. V. 13. P. 406-407. DOI: 10.1002/pol. 1954.120137012.

Brunelle D.J. Cyclic oligomer chemistry. J. Polym. Sci. Polym. Chem. 2008. V. 46. P. 1151. DOI: 10.1002/pola.22526.

Brunelle D. J., Bradt J. E., Serth-Guzzo J., Takekoshi T., Evans T. L., Pearce E. J., Wilson P. R. Semicrystalline pol-ymers via ring-opening polymerization: Preparation and polymerization of alkylene phthalate cyclic oligomers. Mac-romolecules. 1998. V. 31. P. 4782-4790. DOI: 10.1021/ma971491j.

Brunelle D.J., Takekoshi T. US Patent N 5407984 Process for preparing macrocyclic polyester oligomers.

Burch Jr. R.R., Dembek A.A., Lustig S.R., Spinu M. US Patent N 6297330 B1. Polymerizations based on cyclic oli-gomer.

Mohd Ishak Z.A., Karger-Kocsis J. On the in-situ polymer-ization of cyclic butylene terephthalate oligomers: DSC and rheological studies. Polym. Eng. Sci. 2006. V.46. P. 743–750. DOI: 10.1002/pen.20486.

Tripathy A.R., Elmoumni A., Winter H.H., MacKngith W.J. Effects of catalyst and polymerization temperature on the in-situ polymerization of cyclic poly(butylene terephthalate) oligomers for composite applications. Macromolecules. 2005. V. 38. P. 709–715. DOI: 10.1021/ma0483874.

Rösch M. Verarbeitungshilfsmittel: Alles im Fluss (Pro-cessing aid: It’s all a matter of flow). Kunststoffe. 2006. V. 96. P. 90–91.

Hamb F.L., Trent L.C. Synthesis of cyclic tris(ethyleneterephthalate). J Polym Sci Polym Lett. 1967. V. 5. P. 1057-1058. DOI: 10.1002/pol.1967.110051202.

Nagahata R, Sugiyama J, Nakao Y, Asai M, Takeuchi K. Selective synthesis of macrocyclic ethylene isophthalate dim-mer. Macromolecules. 2003. V. 36. P. 2582. DOI: 10.1021/ ma0257191.

Brunelle D.J., Bradt J.E., Serth-Guzzo J. Semicrystalline polymers via ring-opening polymerization: preparation and polymerization of alkylene phthalate cyclic oligomers. Mac-romolecules. 1998. V. 31. P. 4782. DOI: 10.1021/ma971491j.

Bryant J.J.L., Semlyen J.A. Cyclic polyesters: 7. Prepara-tion and characterization of cyclic oligomers from solution ring-chain reactions of poly(butylene terephthalate). Polymer. 1997. V. 38. N 17. P. 4531-4537. DOI: 10.1016/S0032-3861(96)01035-X.

Nagahata R, Sugiyama J, Nakao Y, Hirata H. Synthesis and microwave polymerization of single-sized macrocyclic monomeric precursors of poly(ethylene isophthalate). Polym. Preprints. 2003. V. 44. P. 1033.

Nagahata R., Sugiyama J., Nakao Y., Asai M., Takeuchi K. Selective synthesis of macrocyclic ethylene isophthalate dimmer. Macromolecules. 2003. V. 36. P. 2582. DOI: 10.1021/ ma0257191.

Wood B.R., Hodge P., Semlyen J.A. Cyclic polyesters.

Preparation by a new synthetic method using polymer sup-ported reagents. Polymer. 1993. V. 34. P. 3052. DOI: 10.1016/0032-3861(93)90634-M.

Hamilton S.C., Semlyen J.A., Haddleton D.M. Cyclic pol-yesters: Part 8. Preparation and characterization of cyclic oli-gomers in six aromatic ester and ether–ester systems. Poly-mer. 1998. V. 39. P. 3241. DOI: 10.1016/S0032-3861(97)00467-9.

Hall A.J., Hodge P., McGrail C.S. Synthesis of a series of cyclic oligo(alkylidene isophthalate)s by cyclo-depolymerisation. // Polymer. 2000. V. 41. P.1239. https://doi.org/10.1016/S0032-3861(97)00467-9

Kamau S.D., Hodge P., Helliwell M. Cyclo-depolymerization of poly(propylene terephthalate): some ring-opening polymerizations of the cyclic oligomers produced. Polym. Adv. Technol. 2003. V. 14. P. 492–501. DOI: 10.1002/pat.360.

Bryant J.J.L., Semlyen J.A. Cyclic polyesters. 6. Prepara-tion and characterization of two series of cyclic oligomers from solution ring-chain reactions of poly(ethylene tereph-thalate). Polymer. 1997. V. 38. P. 2475. DOI: 10.1016/S0032-3861(96)00801-4.

Tullo A. Best of both worlds, Cyclic Corp. Hopes that a new twist on polybutylene terephthalate will create a niche. Chemi-cal and Engineering News. 2002. V. 80. N 4. P. 22. DOI: 10.1021/cen-v080n044.p022.

Nagahata R., Sugiyama J., Goyal M., Asai M., Ueda M., Takeuchi K. Solid-phase thermal polymerization of macrocy-clic ethylene terephthalate dimer using various transesterifica-tion catalysts. J. Polym. Sci.: Part A. Polym. Chem. 2000. V. 38. P. 3360. DOI: 10.1002/1099-0518(20000915)38:18< 3360::AID-POLA140>3.0.CO;2-Y.

Youk J.H., Kambour R.P., MacKnight W.J. Polymeriza-tion of ethylene terephthalate cyclic oligomers with antimony trioxide. Macromolecules. 2000. V. 33. P. 3594. DOI: 10.1021/ma991838d.

Youk J.H., Boulares A., Kambour R.P., Macknight W.J. Polymerization of ethylene terephthalate cyclic oligomers with a cyclic dibutyltin initiator. Macromolecules. 2000.

V. 33. P. 3600. DOI: 10.1021/ma9918396.

Hubbard P., Brittain W.J., Simonsick W.J., Ross C.W. Synthesis and ring-opening polymerization of poly(alkylene 2,6-naphthalenedicarboxylate) cyclic oligomers. Macromole-cules. 1996. V. 29. P. 8304. DOI: 10.1021/ma960850s.

Burch R.R., Lusig S.R., Spinu M. Synthesis of cyclic oli-goesters and their rapid polymerization to high molecular weight. Macromolecules. 2000. V. 33. P. 5053. DOI: 10.1021/ma000278b.

Berr C.E. Isolation of a cyclic dimer during synthesis of pol-yethylene isophthalate. J. Polym. Sci. 1955. V. 15. P. 591. DOI: 10.1002/pol.1955.120158025.

Brunelle D.J., McDermott J.B. US Patent N 5231161 Method for preparation of macrocyclic poly(alkylene dicar-boxylate) oligomers from bis(hydroxyalkyl) dicarboxylates.

Pang K., Kotek R., Tonelli A. Review of conventional and novel polymerization processes for polyesters. Prog. Polym. Sci. 2006. V. 31. P. 1009–1037. DOI: 10.1016/j.progpolymsci.2006.08.008.

Chen H., Yu W., Zhou C. Entropically-driven ring-opening polymerization of cyclic butylene terephthalate: Rheology and kinetics. Polym. Eng. Sci. 2012. V. 52. N 1. P. 91–101. DOI: 10.1002/pen.22050.

Wu C.-M., Huang C.-W. Melting and crystallization behav-ior of copolymer from cyclic butylene terephthalate and poly-caprolactone. Polym. Eng. Sci. 2011. V. 51. N 5. P. 1004–1013. DOI: 10.1002/pen.21910.

Tripathy A.R., Elmoumni A., Winter H.H., MacKnight W.J. Effects of catalyst and polymerization tem-perature on the in-situ polymerization of cyclic poly(butylene tereph-thalate) oligomers for composite applications. Macromole-cules. 2005. V. 38. N 3. P. 709–715. DOI: 10.1021/ ma0483874.

Cyclics. CBT160. Datasheet, available online: www.cyclics. com (Accessed September 28, 2009).

Arkema. Fascat4105. Datasheet, available online: www.arke-mainc.us (Accessed September 28, 2009).

Tobias A., Miguel S. A Review of the Recent Advances in Cyclic Butylene Terephthalate Technology and its Compo-sites. Critical Reviews in Solid State and Materials Sciences. 2016. V. 0. P. 1–45. DOI: 10.1080/10408436.2016.1160820.

Parton H., Baets J., Lipnik P., Goderis B., Devaux J., Verpoest I. Properties of poly(butylene terephthatlate) pol-ymerized from cyclic oligomers and its composites. Polymer. 2005. V. 46. N 23. P. 9871–9880. DOI: 10.1016/j.polymer.2005.07.082.

Baets J. Toughening of in-situ polymerized cyclic butyle-neterephthalate for use in continuous fiber reinforced thermo-plastic composites. Leuven, Belgium: Dept. of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven. 2008.

Miller S. Macrocyclic polymers from cyclic oligomers of poly(butylene terephthalate). Amherst: University of Massa-chusetts Amherst. 1998. 275 р.

Abt T., Sanchez-Soto M., Martınez de Ilarduya A. Tough-ening of in-situ polymerized cyclic butylene terephthalate by chain extension with a bifunctional epoxy resin. Eur. Polym. 2012. V. 48. P.163–171. DOI: 10.1016/j.eurpolymj.2011. 10.017.

Balogh G. Development of cyclic butylene terephthalate ma-trix composites. Budapest, Hungary: Dept. of Polymer Engi-neering, Budapest University of Technology and Economics. 2012. 13 р.

Li Z., Downes R., Liang Z. In situ polymerized pCBT com-posites with aligned carbon nanotube buckypaper: structure and properties. Macromol. Chem. Phys. 2015. V. 216. N 3.

P. 292–300. DOI: 10.1002/macp.201400443.

Чуков Н.А., Микитаев М.А. Циклический полибутилен-терефталат как основа для суперконцентратов нанонапол-нителей. VI Всероссийская конференция по наноматериа-лам с элементами научной школы для молодежи. Сборник материалов. М.: ИМЕТ РАН. 2016. С. 435.

Chukov N.A., Mikitaev M.A. Cyclic butylene terephthalate as the base for superconcentrates of nano fillers. VI All Rus-sian conference on nano materials with elements of scientific scholl for butylene the youth. Proceedings. M.: IMET RAS. 2016. P. 435 (in Russian).

Baets J., Godara A., Devaux J., Verpoest I. Toughening of polymerized cyclic butylene terephthalate with carbon nano-tubes for use in composites. Compos. Part A Appl. Sci. Manu-fact. 2008. V. 39. N 11. P. 1756–1761. DOI: 10.1016/j.compositesa.2008.08.004.

Baets J., Godara A., Devaux J., Verpoest I. Toughening of isothermally polymerized cyclic butylene terephthalate for use in composites. Polym. Degrad. Stab. 2010. V. 95. N 3.

P. 346–352. DOI: 10.1016/j.polymdegradstab.2009.11.005.

Broza G., Kwiatkowska M., Roslaniec Z., Schulte K. Pro-cessing and assessment of poly(butylene terephthalate) nano-composites reinforced with oxidized single wall carbon nano-tubes. Polymer. 2005. V. 46(16). P. 5860–5867. DOI: 10.1016/j.polymer.2005.05.073.

Romhany G., Vıgh J., Thomann R., Karger-Kocsis J., Sajo I.E. pCBT/MWCNT nanocomposites prepared by in situ polymerization of CBT after solid-phase highenergy ball milling of CBT with MWCNT. Macromolec. Mater. Eng. 2011. V. 296. N 6. P. 544–550. DOI: 10.1002/mame.201000381.

Wu D., Wu L., Yu G., Xu B., Zhang M. Crystallization and thermal behavior of multiwalled carbon nano-tube/poly(butylenes terephthalate) composites. Polym.Eng. Sci. 2008. V. 48. N 6. P. 1057–1067. DOI: 10.1002/pen.21049.

Fang H., Wu F. Nonisothermal crystallization kinetics of poly(butylene terephthalate)/multiwalled carbon nanotubes nanocomposites prepared by in situ polymerization. J. Appl. Polym. Sci. 2014. V. 131. N 19. P. 40849. DOI: 10.1002/ app.40849.

Wu F., Yang G. Synthesis and properties of poly(butylene terephthalate)/multiwalled carbon nanotube nanocomposites prepared by in situ polymerization and in situ compatibiliza-tion. J. Appl. Polym. Sci. 2010. V. 118. N 5. P. 2929–2938. DOI: 10.1002/app.32625.

Wu F., Yang G. Poly(butylene terephthalate)-functionalized MWNTs by in situ ring-opening polymerization of cyclic bu-tylene terephthalate oligomers. Polym. Adv. Technol. 2011.

V. 22. N 10. P. 1466–1470. DOI: 10.1002/pat.1762.

Li Z., Downes R., Liang Z. In situ polymerized pCBT com-posites with aligned carbon nanotube buckypaper: structure and properties. Macromol. Chem. Phys. 2015. V. 216. N 3.

P. 292–300. DOI: 10.1002/macp.201400443.

Kim S.Y., Noh Y.J., Yu J. Improved thermal conductivity of polymeric composites fabricated by solvent free processing for the enhanced dispersion of nanofillers and a theoretical ap-proach for composites containing multiple heterogeneities and geometrized nanofillers. Compos. Sci. Technol. 2014. V. 101. P. 79–85. DOI: 10.1016/j.compscitech.2014.06.028.

Kim S.Y., Noh Y.J., Yu J. Prediction and experimental vali-dation of electrical percolation by applying a modified micro-mechanics model considering multiple heterogeneous inclu-sions. Compos.Sci.Technol. 2015. V. 106. P. 156–162. DOI: 10.1016/j.compscitech.2014.11.015.

Noh Y.J., Pak S.Y., Hwang S.H., Hwang J.Y., Kim S.Y., Youn J.R. Enhanced dispersion for electrical percolation be-havior of multi-walled carbon nanotubes in polymer nano-composites using simple powder mixing and in situ polymeri-zation with surface treatment of the fillers. Compos. Sci. Technol. 2013. V. 89. P. 29–37. DOI: 10.1016/j.compscitech.2013.09.013.

Noh Y., Kim H., Kim S. Carbon nanotube mat reinforced thermoplastic composites with a polymerizable, low-viscosity cyclic butylene terephthalate matrix. Macromol. Res. 2014.

V. 22. N 11. P. 1183–1189. DOI: 10.1007/s13233-014-2171-1.

Berti C., Fiorini M., Sisti L. Synthesis of poly(butylene terephtahlate) nanocomposites using anionic clays. Eur. Polym. J. 2009. V. 45. N 1. P. 70–78. DOI: 10.1016/j.eurpolymj.2008.09.039.

Chang Y.-W., Kim S., Kyung Y. Poly(butylene tereph-thalate)–clay nanocomposites prepared by melt intercalation: morphology and thermomechanical properties. Polym. Int. 2005. V. 54. N 2. P. 348–353. DOI: 10.1002/pi.1686.

Hwang S.-S., Liu S.-P., Hsu P.P., Yeh J.-M., Chang K.-C., Lai Y.-Z. Effect of organoclay on the mechanical/thermal properties of microcellular injection molded PBT–clay nano-composites. Int. Commun. Heat MassTransf. 2010. V. 37. N 8. P. 1036–1043. DOI: 10.1016/j.icheatmasstransfer.2010.06.010.

Li X., Kang T., Cho W.-J., Lee J.-K., Ha C.-S. Preparation and characterization of poly(butyleneterephthalate)/organoclay nanocomposites. Macromol. Rapid Commun. 2001. V. 22. N 16. P. 1306–1312. DOI: 10.1002/1521-3927 (20011101)22:16<1306::AID-MARC1306>3.0.CO;2-I.

Xiao J., Hu Y., Wang Z., Tang Y., Chen Z., Fan W. Prep-aration and characterization of poly(butylene terephthalate) nanocomposites from thermally stable organic-modified montmorillonite. Eur. Polym. J. 2005. V. 41. N 5. P. 1030–1035. DOI: 10.1016/j.eurpolymj.2004.11.025.

Berti C., Binassi E., Colonna M., Fiorini M., Zuccheri T., Karanam S., Brunelle D.J. Improved dispersion of clay platelets in poly(butylene terephthalate) nanocomposite by ring-opening polymerization of cyclic oligomers: Effect of the processing conditions and comparison with nanocomposites obtained by melt intercalation. J.Appl. Polym. Sci. 2009.

V. 114. N 5. P. 3211–3217. DOI: 10.1002/app.30957.

Dion R.P., Bank D.H., Beebe M.C., Walia P., LeBaron C., Oelberg J.D., Barger M.A. Patent US 0059768 A1 Paquette, and M.D. Read, Polymerized macrocyclic oligomer nanocom-posite compositions.

Hong Y., Yoon H., Lim S. Preparation of PBT/clay nano-composites using supercritical process. Int. J. Precis.Eng. Manuf. 2009. V. 10. N 3. P. 115–118. DOI: 10.1007/s12541-009-0055-7.

Lanciano G., Greco A., Maffezzoli A., Mascia L. Effects of thermal history in the ring opening polymerization of CBT and its mixtures with montmorillonite on the crystallization of the resulting poly(butylene terephthalate). Thermochim. Acta. 2009. V. 493. N 1–2. P. 61–67. DOI: 10.1016/j.tca.2009. 04.004.

McLauchlin A., Bao X., Zhao F. Organoclay polybutylene terephthalate nanocomposites using dual surfactantmodified montmorillonite prepared by the masterbatch method. Appl. Clay Sci. 2011. V. 53. N 4. P. 749–753. DOI: 10.1016/ j.clay.2011.07.006.

Tripathy A.R., Burgaz E., Kukureka S.N., MacKnight W.J. Poly(butylene terephthalate) nanocomposites prepared by in-situ polymerization. Macromolecules. 2003. V. 36. N 23. P. 8593-8595. DOI: 10.1021/ma021364+.

Wan C., Zhao F., Bao X., Kandasubramanian B., Dug-gan M. Surface characteristics of polyhedral oligomeric silsesquioxane modified clay and its application in polymeriza-tion of macrocyclic polyester oligomers. J. Phys.Chem. B. 2008.

V. 112. N 38. P. 11915–11922. DOI: 10.1021/jp805259q.

Wu F.M., Yang G.S. Poly(butylene terephthalate)/organoclay nanocomposites prepared by in-situ bulk polymerization with cyclic poly(butylene terephthalate). Mater. Lett. 2009. V. 63. N 20. P. 1686–1688. DOI: 10.1016/j.matlet.2009.05.011.

Abt T., Bou J.J., Sanchez-Soto M. Isocyanate toughening of pCBT/organoclay nanocomposites with exfoliated structure and enhanced mechanical properties. Express Polym. Lett. 2014. V. 8(12). P. 953–966. DOI: 10.3144/expresspolymlett.2014.96.

Parton H., Verpoest I. In situ polymerization of thermo-plastic composites based on cyclic oligomers. Polym. Com-pos. 2005. V. 26. N 1. P. 60–65. DOI: 10.1002/pc.20074.

Mader E., Gao S.-L., Plonka R., Wang J. Investigation on adhesion, interphases, and failure behaviour of cyclic butylene terephthalate CBT/glass fiber composites. Compos. Sci. Tech-nol. 2007. V. 67. N 15–16. P. 3140–3150. DOI: 10.1016/j.compscitech.2007.04.014.

Durai Prabhakaran R.T., Pillai S., Charca S., Osh-kovr S., Knudsen H., Andersen T., Bech J., Thomsen O., Lil-holt H. Effect of polymer form and its consolidation on me-chanical properties and quality of glass/pbt composites. Appl. Compos. Mater. 2014. V. 21. N 2. P. 301–324. DOI: 10.1007/s10443-013-9340-9.

Archer E., Mulligan R., Dixon D., Buchanan S., Stewart G., McIlhagger A. An investigation into thermoplastic matrix 3D woven carbon fibre composites. J. Reinf. Plast. Compos. 2012. V. 31. N 13. P. 863–873. DOI: 10.1177/0731684412449065.

Abt T., Karger-Kocsis J., Sanchez-Soto M. Toughened carbon fiber fabric-reinforced pCBT composites. Polym. Compos. 2014. V. 7. P. 138. DOI: 10.1002/pc.23314.

Karger-Kocsis J., Felhos D., Bárány T., Czigány T. Hy-brids of HNBR and in situ polymerizable cyclic butylene ter-ephthalate (CBT) oligomers: Properties and dry sliding behav-ior. Express Polym. Lett. 2008. V. 2. P. 520–527. DOI: 10.3144/expresspolymlett.2008.62.

Xu D., Karger-Kocsis J., Apostolov A.A. Hybrids from HNBR and in situ polymerizable cyclic butylene terephthalate (CBT): Structure and rolling wear properties. Eur. Polym. J. 2009. V. 45. P. 1270–1281. DOI: 10.1016/j.eurpolymj.2008.11.029.

Xu D., Karger-Kocsis J. Rolling and sliding wear properties of hybrid systems of uncured/cured HNBR and partly pol-ymerized cyclic butylene terephthalate (CBT). Tribol. Int. 2010. V. 43.

P. 289–298. DOI: 10.1016/j.triboint.2009.06.008.

Halász I.Z., Bárány T. Novel bifunctional additive for rub-bers: Cyclic butylene terephthalate oligomer. Period. Polytech. Mech. Eng. 2015. V. 59. P. 182–188. DOI: 10.3311/ PPme.8321.

Halász I.Z., Bárány T. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature. Materi-als. 2016. V. 9. N 9. P. 722-733. DOI: 10.3390/ma9090722.

Tzounis L., Gartner T., Liebscher M., Potschke P., Stamm M., Voit B., Heinrich G. Influence of a cyclic butyl-ene terephthalate oligomer on the processability and thermoe-lectric properties of polycarbonate/MWCNT nanocomposites. Polymer. 2014. V. 55. N 21. P. 5381–5388. DOI: 10.1016/j.polymer.2014.08.048.

Mdivanova I.R., Khakulova D.M., Abazova O.A., Mam-khegov R.M., Zhansitov A.A., Kharishova C.Yu., Mik-itaev A.K. Study of thermal and heat physical properties of composite materials on the basis of polyethylene terephthalate and super concentrates of layered silicate particles in cyclic bu-tylene terephthalate. Plastich. Massy. 2015. N 5-6. P. 61-63 (in Russian).

Опубликован
2017-08-24
Как цитировать
Chukov, N. A., Mikitaev, M. A., Ligidov, M. K., Bashorov, M. T., Shogenov, V. N., & Pakhomov, S. I. (2017). ЦИКЛИЧЕСКИЙ БУТИЛЕНТЕРЕФТАЛАТ И ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ ЕГО ИСПОЛЬЗОВАНИЯ. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 60(7), 4-13. https://doi.org/10.6060/tcct.2017607.5558
Раздел
Обзорные статьи