PLASMA PARAMETERS AND DENSITIES OF ACTIVE SPECIES IN MIXTURES OF FLUOROCARBON GASES WITH ARGON AND OXYGEN

  • Alexander M. Efremov Ivanovo State University of Chemistry and Technology
  • Vladimir B. Betelin SRISA RAS
  • Konstantin A. Mednikov SRISA RAS
  • Kwang-Ho Kwon Korea University
Keywords: fluorocarbon gases, plasma, parameters, active species, ionization, dissociation, etching, polymerization

Abstract

The comparative study of plasma electro-physical parameters and steady-state gas phase compositions in CF4 + O2 + Ar, CHF3 + O2 + Ar and C4F8 + O2 + Ar gas mixtures was carried out under the condition of 13.56 MHz inductive RF discharge. Constant processing parameters were fluorocarbon component fraction in a feed gas (50%), total gas pressure (6 mTorr), input power (700 W) and bias power (200 W). The investigation scheme included plasma diagnostics by Langmuir probes and 0-dimensional (global) modeling of plasma chemistry. It was found that polymerizing ability in both non-oxygenated (50% Ar) and oxygenated (50% O2) gas systems correlates with the x/z ratio in the original CxHyFz molecule. The substitution of Ar for O2 causes similar changes in electrons- and ions-related plasma parameters (electron temperature, plasma density, ion bombardment energy), always suppresses densities of polymerizing radicals and polymer film thickness, but has the different impact on the F atom kinetics. An increase in O2 fraction in 50% CF4 + O2 + Ar and 50% CHF3 + O2 + Ar gas mixtures results in monotonically increasing F atom densities. Mechanisms of these phenomena are increasing F atom formation rate and decreasing the F atom decay frequency, respectively. The addition of oxygen to 50% C4F8 + O2 + Ar gas mixture lowers the F atom formation rate, but does not result in sufficient changes in their decay frequency. This corresponds to monotonically decreasing F atom density toward O2-rich plasmas. As a result, the steady-state density of F atoms in gas systems with 50% O2 increases in the sequence of C4F8 - CHF3 - CF4.

References

Donnelly V.M., Kornblit A. Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. 2013. V. 31. P. 050825-48. DOI: 10.1116/1.4819316

Nojiri K. Dry etching tech.nology for semiconductors. To-kyo: Springer Internat. Publ. 2015. 116 p. DOI: 10.1007/978-3-319-10295-5.

Advanced plasma processing technology. New York: John Wiley & Sons Inc. 2008. 479 p.

Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing. New York: John Wiley & Sons Inc. 2005. 757 p. DOI: 10.1002/0471724254.

Kimura T., Noto M. Experimental study and global model of inductively coupled CF4/O2 discharges. J. Appl. Phys. 2006. V. 100. P. 063303-12. DOI: 10.1063/1.2345461.

Kimura T., Ohe K. Probe measurements and global model of inductively coupled Ar/CF4 discharges. Plasma Sources Sci. Technol. 1999. V. 8. P. 553-560. DOI: 10.1088/0963-0252/8/4/305.

Chun I., Efremov A., Yeom G. Y., Kwon K.-H. A comparative study of CF4/O2/Ar and C4F8/O2/Ar plasmas for dry etching applications. Thin Solid Films. 2015. V. 579. P. 136-143. DOI: 10.1016/j.tsf.2015.02.060.

Efremov A., Lee J., Kim J. On the Control of Plasma Parameters and Active Species Kinetics in CF4 + O2 + Ar Gas Mixture by CF4/O2 and O2/Ar Mixing Ratios. Plasma Chem. Plasma Proc. 2017. V. 37. P. 1445-1462. DOI: 0.1007/s11090-017-9820-z.

Ho P., Johannes J.E., Buss R.J. Modeling the plasma chem-istry of C2F6 and CHF3 etching of silicon dioxide, with comparisons to etch rate and diagnostic data. J. Vac. Sci. Technol. B. 2001. V. 19. P. 2344-2367. DOI: 10.1116/1.1387048.

Efremov A.M., Murin D.B., Kwon K.H. Parameters of plasma and kinetics of active particles in CF4(CHF3) + Ar mixtures of a variable initial composition. Russ. Microelectronics. 2018. V. 47. N 6. P. 371-380. DOI: 10.1134/S1063739718060033.

Efremov A.M., Murin D.B., Kwon K.H. Plasma Parameters and Kinetics of Active Particles in the Mixture CHF3 + O2 + Ar. Russ. Microelectronics. 2020. V. 49. N 4. P. 233-243. DOI: 10.1134/S1063739720030038.

Kokkoris G., Goodyear A., Cooke M., Gogolides E. A global model for C4F8 plasmas coupling gas phase and wall surface reaction kinetics. J. Phys. D. Appl. Phys. 2008. 41. P. 195211-23. DOI: 10.1088/0022-3727/41/19/195211.

Rauf S., Ventzek P.L. Model for an inductively coupled Ar/c-C4F8 plasma discharge. J. Vac. Sci. Technol. A. 2002. V. 20. P. 14-23. DOI: 10.1116/1.1417538.

Efremov A., Murin D., Kwon K.-H. Plasma parameters, densities of active species and etching kinetics in C4F8+Ar gas mixture. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 2. P. 31-37. DOI: 10.6060/ivkkt.20196202.5791.

Lee B. J., Efremov A., Nam Y., Kwon K.-H. Plasma Parameters and Silicon Etching Kinetics in C4F8 + O2 + Ar Gas Mixture: Effect of Component Mixing Ratios. Plasma Chem. Plasma Process. 2020. V. 40. P. 1365-1380. DOI: 10.1007/s11090-020-10097-9.

Efremov A., Murin D., Kwon K.-H. Concerning the Effect of Type of Fluorocarbon Gas on the Output Characteristics of the Reactive-Ion Etching Process. Russ. Microelectronics. 2020. V. 49. N 3. P. 157-165. DOI: 10.1134/S1063739720020031.

Shun’ko E.V. Langmuir probe in theory and practice. Boca Raton: Universal Publ. 2008. 245 p.

Efremov A., Lee J., Kwon K.-H. A comparative study of CF4, Cl2 and HBr + Ar Inductively Coupled Plasmas for Dry Etching Applications. Thin Solid Films. 2017. 629. P. 39-48. DOI: 10.1016/j.tsf.2017.03.035.

Hsu C.C., Nierode M.A., Coburn J.W., Graves D.B. Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas. J. Phys. D Appl. Phys. 2006. V. 39. N 15. P. 3272-3284. DOI: 10.1088/0022-3727/39/15/009.

Proshina O., Rakhimova T.V., Zotovich A., Lopaev D.V., Zyryanov S.M., Rakhimov A.T. Multifold study of volume plasma chemistry in Ar/CF4 and Ar/CHF3 CCP discharges. Plasma Sources Sci. Technol. 2017. V. 26. P. 075005. DOI: 10.1088/1361-6595/aa72c9.

Takahashi K., Hori M., Goto T. Characteristics of fluorocarbon radicals and CHF3 molecule in CHF3 electron cyclotron resonance downstream plasma. Jpn. J. Appl. Phys. 1994. V. 33. P. 4745-4758. DOI: 10.1143/JJAP.33.4745.

Gray D.C., Tepermeister I., Sawin H.H. Phenomenological modeling of ion-enhanced surface kinetics in fluorine-based plasma-etching. J. Vac. Sci. Technol. B. 1993. V. 11. P. 1243-1257. DOI: 10.1116/1.586925.

Standaert T.E.F.M., Hedlund C., Joseph E.A., Oehrlein G.S., Dalton T.J. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide. J. Vac. Sci. Technol. A. 2004. V. 22. P. 53-60. DOI: 10.1116/1.1626642.

Schaepkens M., Standaert T.E.F.M., Rueger N.R., Sebel P.G.M., Oehrlein G.S., Cook J. Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism. J. Vac. Sci. Technol. A. 1999. V. 17. P. 26-37. DOI: 10.1116/1.582108.

Matsui M., Tatsumi T., Sekine M. Relationship of etch reaction and reactive species flux in C4F8/Ar/O2 plasma for SiO2 selective etching over Si and Si3N4. J. Vac. Sci. Technol. A. 2001. V. 19. P. 2089-2096. DOI: 10.1116/1.1376709.

Kastenmeier B.E.E., Matsuo P.J., Oehrlein G.S. Highly selective etching of silicon nitride over silicon and silicon dioxide. J. Vac. Sci. Technol. A. 1999. V. 17. P. 3179-3184. DOI: 10.1116/1.582097.

Published
2021-06-18
How to Cite
Efremov, A. M., Betelin, V. B., Mednikov, K. A., & Kwon, K.-H. (2021). PLASMA PARAMETERS AND DENSITIES OF ACTIVE SPECIES IN MIXTURES OF FLUOROCARBON GASES WITH ARGON AND OXYGEN. ChemChemTech, 64(7), 46-53. https://doi.org/10.6060/ivkkt.20216407.6390
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)

1 2 > >>