СОЗДАНИЕ И СВОЙСТВА БИОКОМПОЗИТНЫХ НАНОЧАСТИЦ НА ОСНОВЕ ФУКОИДАНА КАК НОСИТЕЛЕЙ ФИБРИНОЛИТИЧЕСКОГО ФЕРМЕНТА

  • Victoria E. Suprunchuk Северо-Кавказский федеральный университет
Ключевые слова: фукоидан, магнетит, тканевой активатор плазминогена, наночастицы, нанобиокомпозит

Аннотация

Биодеградируемые нанокомпозиты, обладающие способностью к магнитному наведению, являются новым классом функциональных материалов, способствующих расширению возможностей клинической терапии. В работе описан химизм формирования нанобиокомпозитного материала на основе природного полимера, синтезированного путем электростатического взаимодействия полисахарида и магнетита в водной среде. Изучена возможность электростатической иммобилизации модельного фибринолитического фермента.  Методом динамического рассеяния света установлено повышение электрохимического потенциала частиц при иммобилизации фибринолитического фермента. Степень включения фермента составила 9,95±0,05 масс.%. Средний размер частиц нанобиокомпозитного материала после иммобилизации фермента составил 264,3 нм. Исследование магнитных свойств показало отсутствие остаточной намагниченности, что позволяет исключить возможность магнитного агрегирования при применении биокомпозита в биологическом приложении. Намагниченность насыщения сформированного материала составила 57,1± 2,3 кА/м, что ниже, чем у золя чистого магнетита (MS
∼ 73,8±3,4 кА/м), однако достаточно для манипулирования в условиях сопротивления кровотоку. Изучены кинетические закономерности высвобождения ферментного препарата в фосфатном буфере из нанокомпозитного носителя на основе фукоидана. Для изучения кинетики высвобождения фермента методом математического моделирования были использованы модели нулевого и первого порядка, модель Корсмейера-Пеппаса, модель Хигучи, модель Бейкера-Лонсдейла. Кинетика высвобождения фибринолитического фермента с высокой точностью (r2 = 0.98) описывается уравнением Корсмейера–Пеппаса, где на процесс релиза ферментного препарата оказывает влияние диффузия, подчиняющаяся закону Фика. Установлено, что модели нулевого и первого порядка применимы только к начальному (0-40 мин, где r2 = 0,96) и конечному (80-320 мин, r2 = 0,93) этапу релиза.

Для цитирования:

Супрунчук В.Е. Создание и свойства биокомпозитных наночастиц на основе фукоидана как носителей фибринолитического фермента. Изв. вузов. Химия и хим. технология. 2023. Т. 66. Вып. 5. С. 87-95. DOI: 10.6060/ivkkt.20236605.6680.

Литература

Chung T.W., Wang S.S., Tsai W.J. Accelerating throm-bolysis with chitosan-coated plasminogen activators en-capsulated in poly-(lactide-co-glycolide) (PLGA) nano-particles. Biomaterials. 2008. V. 29. N 2 Р. 228–237. DOI: 10.1016/j.biomaterials.2007.09.027.

Kempe H., Kempe M. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials. 2010. V. 31. N 36. P. 9499–9510. DOI: 10.1016/j.biomaterials.2010.07.107.

Liu S., Feng X., Jin R., Li G. Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin. Drug Deliv. 2017. V 15. N 2. P. 173–184. DOI: 10.1080/17425247.2018.1384464.

Zamanlu M., Farhoudi M., Eskandani M., Mahmoudi J., Barar J., Rafi M., Omidi Y. Recent advances in tar-geted delivery of tissue plasminogen activator for enhanced thrombolysis in ischaemic stroke. J. Drug Target. 2018. V. 26. P. 95–109. DOI: 10.1080/1061186X.2017.1365874.

Absar S., Kwon Y. M., Ahsan F. Bioresponsive delivery of tissue plasminogen activator for localized thrombo-lysis. J. Control Release. 2014. V. 177. N 1. P. 42–50. DOI: 10.1016/j.jconrel.2013.12.036.

Zhao X., Guo F., Hu J., Zhang Xue C., Zhang Z., Li B. Antithrombotic activity of oral administered low molecu-lar weight fucoidan from Laminaria Japonica. Thromb. Res. 2016. V. 144. Р. 46–52. DOI: 10.1016/j.thromres.2016.03.008.

Hwang P.A., Hung Y.L., Chien S.Y. Inhibitory activity of Sargassum hemiphyllum sulfated polysaccharide in arachidonic acidinduced animal models of inflammation. J. Food Drug Anal. 2015. V. 23. N 1. Р. 49–56. DOI: 10.1016/j.jfda.2014.05.004.

Wang J., Zhang Q., Zhang Z., Song H., Li P. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2010. V. 46. N 1. Р. 6–12. DOI: 10.1016/j.ijbiomac.2009.10.015.

Irhimeh M.R., Fitton J.H., Lowenthal R.M. Pilot clinical study to evaluate the anticoagulant activity of fucoidan. Blood Coagul. Fibrin. 2009. V. 20. N 7. Р. 607–10. DOI: 10.1097/MBC.0b013e32833135fe.

Ruocco N., Costantini S., Guariniello S., Costantini M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules. V. 21. N 5. 2016. Р. 1–16. DOI: 10.3390/molecules21050551.

Wijesekara I., Pangestuti R., Kim S.K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2011. V. 84. N 1. Р. 14–21. DOI: 10.1016/j.carbpol.2010.10.062.

Bachelet L., Bertholon I., Lavigne D., Vassy R., Jandrot-Perrus M., Chaubet F., Letourneur D. Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets. Biochim. Bio-phys. Acta Gen. Subj. 2009. V. 1790. N 2. Р. 141–146. DOI: 10.1016/J.BBAGEN.2008.10.008.

Ley K. The role of selectins in inflammation and disease. Trends Mol. Med. 2003. V. 9. N 6. Р. 263–268. DOI: 10.1016/S1471-4914(03)00071-6.

Juenet M., Aid-Launais R., Li B., Berger A., Aerts J., Ollivier V., Nicoletti A., Letourneur D., Chauvierre C. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials. 2018. V. 156. Р. 204–216. DOI: 10.1016/j.biomaterials.2017.11.047.

Nardoni M., Della Valle E., Liberti M., Relucenti M., Casadei M.A., Paolicelli P., Apollonio F., Petralito S. Can pulsed electromagnetic fields trigger on-demand drug release from high-tm magnetoliposomes? Nanomaterials. 2018. V. 8. N 4. Р. 1–9. DOI: 10.3390/nano8040196.

Suprunchuk V.E. Physicochemical properties of fucoidan/magnetite nanoparticles loaded with a model en-zyme. Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikov. 2022. V. 18. N 3. Р. 35–38 (in Russian).

Zvyagintseva T.N., Shevchenko N.M., Popivnich I.B., Isakov V.V., Scobun A.S., Sundukova E.V. Elyakova L.A. A new procedure for the separation of water-soluble polysaccharides from brown seaweeds. Carbohydr. Res. 1999. V. 322. N 1–2. Р. 32–39. DOI: 10.1016/S0008-6215(99)00206-2.

Urvantseva A.M., Bakunina I.Yu., Kim N.Yu., Isakov V., Glazunov V.P., Zvyagintseva T.N. Isolation of purified fucoidan from a natural complex with polyphenols and its characterization. Khim. Rastitel. Syr’ya. 2004. N 3. Р. 15–24 (in Russian).

Suprunchuk V.E. Low frequency high intensity sonication of sulfated brown algae polysaccharide. J. Sib. Fed. Univ.: Chem. 2021. V. 14. N 4. С. 582–592 (in Rus-sian). DOI: 10.17516/1998-2836-0265.

Drozdov A.S., Ivanovski V., Avnir D., Vinogradov V.V. A universal magnetic ferrofluid: Nanomagnetite sta-ble hydrosol with no added dispersants and at neutral pH. J. Colloid Interface Sci. 2016. V. 468. P. 307–312. DOI: 10.1016/j.jcis.2016.01.061.

Filippova N.I., Teslev A.A. Application of mathematical modeling in the evaluation of the release of drugs in vitro. Razrab. Registr. Lekarstv. Sr-v. 2017. V. 4. N 21. P. 218–226 (in Russian).

Reddy H., Sambasivarao A. Different kinetic mathematical models used to drug release from solid dosage form. Int. J. Inf. Res. Rev. 2017. V. 4. N 12. P. 4845–4850.

Lu S., Yuan Z., Zhang C. Binding mechanisms of poly-saccharides adsorbing onto magnetite concentrate surface. Powder Technol. 2018. V. 340. P. 17–25. DOI: 10.1016/j.powtec.2018.09.021.

Zhou Y., Zhang Y., Li G., Wu Y., Jiang T. A further study on adsorption interaction of humic acid on natural magnetite , hematite and quartz in iron ore pelletizing process: Effect of the solution pH value. Powder Tech-nol. 2015. V. 271. P. 155–166. DOI: 10.1016/j.powtec.2014.10.045.

Rivera L.M.R., Paterno L.G., Chaves N.L., Gregurec D., Báo S.N., Moya S.E., Jain M., Azevedo R.B., Mo-rais P.C., Soler M.A.G. Biocompatible superparamagnetic carriers of chondroitin sulfate. Mater. Res. Express. 2019. V. 6. N 6. Р. 066106. DOI: 10.1088/2053-1591/ab0950.

Bacri J.-C., Perzynski R., Salin D., Cabuil V., Massart R. Ionic ferrofluids: A crossing of chemistry and physics. J. Magn. Magn. Mater. 1990. V. 85. N 1–3. P. 27–32. DOI: 10.1016/0304-8853(90)90010-N.

Mauricio M.R., Guilherme M.R., Kunita M.H., Muniz E.C., Rubira A.F. Designing nanostructured micro-spheres with well-defined outlines by mixing carboxyl-functionalized amylose and magnetite via ultrasound. J. Chem. Eng. 2012. V. 189–190. P. 456–463. DOI: 10.1016/j.cej.2012.02.044.

Uesugi Y., Kawata H., Jo J., Saito Y., Tabata Y. An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J. Control Release. 2010. V. 147. N 2. P. 269–277. DOI: 10.1016/j.jconrel.2010.07.127.

Rajesh Kumar S., Priyatharshni S., Babu V. N., Mangalaraj D., Viswanathan C., Kannan S., Ponpandian N. Quercetin conjugated superparamagnetic magnetite nano-particles for in-vitro analysis of breast cancer cell lines for chemotherapy a Plications. J. Colloid Interface Sci. 2014. V. 436. P. 234–242. DOI: 10.1016/j.jcis.2014.08.064.

Wolberg A.S. Thrombin generation and fibrin clot structure. Blood Rev. 2007. V. 21. N 3. P. 131–142. DOI: 10.1016/j.blre.2006.11.001.

Chen J.P., Liu C.H., Hsu H.L., Wu T., Lu Y.J., Ma Y.H. Magnetically controlled release of recombinant tis-sue plasminogen activator from chitosan nanocomposites for targeted thrombolysis. J. Mater. Chem. B. 2016. V. 4. N 15. P. 2578–2590. DOI: 10.1039/c5tb02579f.

Kim J., Kim J., Park J., Byun Y., Kim C. The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials. 2009. V. 30. N 29. P. 5751–5756. DOI: 10.1016/j.biomaterials.2009.07.021.

Smirnova N.N., Smirnov K.V. Interaction of natural and synthetic polyelectrolytes with bovine serum albumin. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 7. P. 45–51. DOI: 10.6060/ivkkt.20196207.5839.

Dash S., Murthy P.N., Lilakanta N., Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. Drug Res. 2010. V. 67. N 3. P. 217–223.

Alruhaie R., Sheshko T.F., Markova E.B., Boldirev S., Razvodova A.A., Cherednichenko A.G. Study of the dissolution kinetics of a solid dispersion of mefenamic acid with polyvinylpyrrolidone. Vestn. MGPU. Ser.: Estestv. Nauki. 2021. V. 6. N 99. P. 79–95 (in Russian). DOI: 10.18698/1812-3368-2021-6-79-95.

Dutta R.K., Sahu S., Reddy V.R. Synthesis, characterization, and in vitro release of diclofenac sodium from hybrid nanostructured magnetite-calcium pectinate. J. Nanopart. Res. 2012. V. 14. N 8. P. 1052. DOI: 10.1007/s11051-012-1052-9.

Wu I.Y., Bala S., Škalko-Basnet N., di Cagno M.P. In-terpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from lipo-somes. Eur. J. Pharm. Sci. 2019. V. 138. P. 105026. DOI: 10.1016/j.ejps.2019.105026.

Ali A., Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 2018. V. 109. P. 273–286. DOI: 10.1016/j.ijbiomac. 2017.12.078.

Shagholani H., Ghoreishi S.M., Mousazadeh M. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application. Int. J. Biol. Macromol. 2015. V. 78. P. 130–136. DOI: 10.1016/j.ijbiomac.2015.02.042.

Allard-Vannier E., Cohen-Jonathan S., Gautier J., Hervé-Aubert K., Munnier E., Soucé M., Legras P., Passirani C., Chourpa I. Pegylated magnetic nanocarriers for doxorubicin delivery: A quantitative determination of stealthiness in vitro and in vivo. Eur. J. Pharm. Biopharm. 2012. V. 81. N 3. P. 498–505. DOI: 10.1016/j.ejpb.2012.04.002.

Franklin A.D., Berkowitz A.E. The Approach to Saturation in Dilute Ferromagnetics. Phys. Rev. 1953. V. 89. N 6. P. 1171–1171. DOI: 10.1103/PhysRev.89.1171.

Bhatt A.S., Krishna Bhat D., Santosh M.S. Electrical and magnetic properties of chitosan-magnetite nanocomposites. Physica B: Phys. Condens. Matter. 2010. V. 405. N 8. P. 2078–2082. DOI: 10.1016/j.physb.2010.01.106.

Gee S.H., Hong Y.K., Erickson D.W., Park M.H., Sur J.C. Synthesis and aging effect of spherical magnetite (Fe3O4) nanoparticles for biosensor applications. J. Appl. Phys. 2003. V. 93. N 10. P. 7560–7562. DOI: 10.1063/1.1540177.

Silva V.A.J., Andrade P.L., Silva M.P.C., Bustamante A.D., De Los Santos Valladares L., Albino Aguiar J. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J. Magn. Magn. Ma-ter. 2013. V. 343. P. 138–143. DOI: 10.1016/j.jmmm.2013.04.062.

Опубликован
2023-03-23
Как цитировать
Suprunchuk, V. E. (2023). СОЗДАНИЕ И СВОЙСТВА БИОКОМПОЗИТНЫХ НАНОЧАСТИЦ НА ОСНОВЕ ФУКОИДАНА КАК НОСИТЕЛЕЙ ФИБРИНОЛИТИЧЕСКОГО ФЕРМЕНТА. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 66(5), 87-95. https://doi.org/10.6060/ivkkt.20236605.6680
Раздел
ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ неорг. и органических веществ, теоретические основы