ON THE EFFECT OF OXYGEN ON PLASMA CHEMICAL KINETICS IN CF4 + O2 AND C4F8 + O2 GAS MIXTURES

  • Alexander M. Efremov Ivanovo State University of Chemistry and Technology
  • Daria E. Bashmakova Ivanovo State University of Chemistry and Technology
  • Kwang-Ho Kwon Korea University
Keywords: CF4, C4F8, O2, plasma, parameters, active species, ionization, dissociation, etching, polymerization

Abstract

In this work, we performed the comparative study of electro-physical plasma parameters, densities of active species and fluorine atom kinetics in CF4 + O2 and C4F8 + O2 gas mixtures with variable initial compositions at constant gas pressure and input power. The combination of plasma diagnostics by Langmuir probes and plasma modeling confirmed known features of plasma properties in individual fluorocarbon gases as well as allowed one to figure out key chemical processes determining plasma parameters in the presence of oxygen. It was shown that an increase in O2 content with a proportional decrease in the fraction of any fluorocarbon component a) causes relatively weak changes in electrons- and ions-related plasma parameters; b) results in more drastic (compared with the dilution effect) decrease in densities of fluorocarbon radicals due to their oxidation into CFxO, FO and COx compounds; and c) sufficiently influences both formation and decay kinetics of fluorine atoms. The non-monotonic (with a maximum at ~ 40-50% O2) change in the F atom density in the CF4 + O2 plasma repeats behavior of their formation rate after the contribution of processes involving CFxO и FO species. The monotonic increase (with a constancy region up to ~ 40-50% O2) in the F atom density in the C4F8 + O2 plasma contradicts with the change in their formation rate, but results from decreasing decay frequency in gas-phase atom-molecular processes. The predictive analysis of heterogeneous process kinetics was carried out using model-yielded data on fluxes of plasma active species. It was found that a) the addition of oxygen always lowers the plasma polymerizing ability; and b) the C4F8 + O2 plasma keeps the higher polymerizing ability at any feed gas composition.

For citation:

Efremov A.M., Bashmakova D.E., Kwon K.-H. On the effect of oxygen on plasma chemical kinetics in CF4 + O2 and C4F8 + O2 gas mixtures. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 1. P. 51-59. DOI: 10.6060/ivkkt.20246701.6721.

References

Wolf S., Tauber R.N. Silicon Processing for the VLSI Era. Volume 1. Process Technology. New York: Lattice Press. 2000. 416 p.

Nojiri K. Dry etching technology for semiconductors. Tokyo: Springer Internat. Publ. 2015. 116 p. DOI: 10.1007/978-3-319-10295-5.

Advanced plasma processing technology. New York: John Wiley & Sons Inc. 2008. 479 p.

Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing. New York: John Wiley & Sons Inc. 2005. 757 p. DOI: 10.1002/0471724254.

Donnelly V.M., Kornblit A. Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. 2013. V. 31.

P. 050825-48. DOI: 10.1116/1.4819316.

Standaert T.E.F.M., Hedlund C., Joseph E.A., Oehrlein G.S., Dalton T.J. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide. J. Vac. Sci. Technol. A. 2004. V. 22. P. 53-60. DOI: 10.1116/1.1626642.

Kastenmeier B.E.E., Matsuo P.J., Oehrlein G.S. Highly selective etching of silicon nitride over silicon and silicon dioxide. J. Vac. Sci. Technol. A. 1999. V. 17. P. 3179-3184. DOI: 10.1116/1.58209.

Schaepkens M., Standaert T.E.F.M., Rueger N.R., Sebel P.G.M., Oehrlein G.S., Cook J.M. Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism. J. Vac. Sci. Technol. A. 1999. V. 17. P. 26-37. DOI: 10.1116/1.582108.

Efremov A., Murin D., Kwon K.-H. Concerning the Effect of Type of Fluorocarbon Gas on the Output Characteristics of the Reactive-Ion Etching Process. Russ. Microelectronics. 2020. V. 49. N 3. P. 157-165. DOI: 10.1134/S1063739720020031.

Efremov A., Lee B. J., Kwon K.-H. On Relationships Between Gas-Phase Chemistry and Reactiveion Etching Kinetics for Silicon-Based Thin Films (SiC, SiO2 and SixNy) in Multi-Component Fluorocarbon Gas Mixtures. Materials. 2021. V. 14. P. 1432(1-27). DOI: 10.3390/ma14061432.

Kimura T., Noto M. Experimental study and global model of inductively coupled CF4/O2 discharges. J. Appl. Phys. 2006. V. 100. P. 063303 (1-9). DOI: 10.1063/1.2345461.

Chun I., Efremov A., Yeom G. Y., Kwon K.-H. A comparative study of CF4/O2/Ar and C4F8/O2/Ar plasmas for dry etching applications. Thin Solid Films. 2015. V. 579. P. 136-143. DOI: 10.1016/j.tsf.2015.02.060.

Efremov A., Lee J., Kim J. On the Control of Plasma Parameters and Active Species Kinetics in CF4 + O2 + Ar Gas Mixture by CF4/O2 and O2/Ar Mixing Ratios. Plasma Chem. Plasma Proc. 2017. V. 37. P. 1445-1462. DOI: 10.1007/s11090-017-9820-z.

Kokkoris G, Goodyear A., Cooke M., Gogolides E. A global model for C4F8 plasmas coupling gas phase and wall surface reaction kinetics. J. Phys. D. Appl. Phys. 2008. V. 41. P. 195211 (1-12). DOI: 10.1088/0022-3727/41/19/195211.

Efremov A.M., Murin D.B., Kwon K.H. Plasma parameters and active species kinetics in CF4+C4F8+Ar gas mixture. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 4-5. P. 31-36. DOI: 10.6060/tcct.20186104-05.5695.

Efremov A.M., Betelin V.B, Mednikov K.A., Kwon K.H. Gasphase parameters and reactiveion etching regimes for Si and SiO2 in binary Ar + CF4/C4F8 mixtures. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 6. P. 25-34. DOI: 10.6060/ivkkt.20216406.6377.

Lim N., Efremov A., Kwon K.-H. A comparison of CF4, CHF3 and C4F8 + Ar/O2 Inductively Coupled Plasmas for Dry Etching Applications. Plasma Chem. Plasma Process. 2021. V. 41. P. 1671-1689. DOI: 10.1007/s11090-021-10198-z.

Lee B. J., Efremov A., Nam Y., Kwon K.-H. Plasma Parameters and Silicon Etching Kinetics in C4F8 + O2 + Ar Gas Mixture: Effect of Component Mixing Ratios. Plasma Chem. Plasma Process. 2020. V. 40. P. 1365-1380. DOI: 10.1007/s11090-020-10097-9.

Lee J., Kwon K.H., Efremov A., Yeom G.Y. Silicon Surface Modification Using C4F8+O2 Plasma for Nano-Imprint Lithography. J. Nanosci. Nanotechnol. 2015. V. 15. N 11. P. 8749-8755. DOI: 10.1166/jnn.2015.11511.

Shun’ko E.V. Langmuir probe in theory and practice. Boca Raton: Universal Publ. 2008. 245 p.

Kimura T., Ohe K. Probe measurements and global model of inductively coupled Ar/CF4 discharges. Plasma Sources Sci. Technol. 1999. V. 8. P. 553-560. DOI: 10.1088/0963-0252/8/4/305.

Rauf S., Ventzek P.L. Model for an inductively coupled Ar/c-C4F8 plasma discharge. J. Vac. Sci. Technol. A. 2002. V. 20. P. 14-23. DOI: 10.1116/1.1417538.

Vasenkov A.V., Li X., Oehlein G.S., Kushner M.J. Prop-erties of c-C4F8 inductively coupled plasmas. II. Plasma chemistry and reaction mechanism for modeling of Ar/c-C4F8/O2 discharges. J. Vac. Sci. Technol. A. 2004. V. 22. P. 511-530. DOI: 10.1116/1.1697483.

Hsu C.C., Nierode M.A., Coburn J.W., Graves D.B. Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas. J. Phys. D. Appl. Phys. 2006. V. 39. P. 3272-3284. DOI: 10.1088/0022-3727/39/15/009.

Efremov A.M., Bashmakova D.E., Kwon K.-H. Features of plasma composition and fluorine atom kinetics in CHF3 + O2 gas mixture. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 1. P. 48-55. DOI: 10.6060/ivkkt.20236601.6667.

Published
2023-12-09
How to Cite
Efremov, A. M., Bashmakova, D. E., & Kwon, K.-H. (2023). ON THE EFFECT OF OXYGEN ON PLASMA CHEMICAL KINETICS IN CF4 + O2 AND C4F8 + O2 GAS MIXTURES. ChemChemTech, 67(1), 51-59. https://doi.org/10.6060/ivkkt.20246701.6721
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)

1 2 > >>