АЦЕТАТ РТУТИ(II) НА ПОДЛОЖКЕ ИЗ ХИТОЗАНА В КАЧЕСТВЕ КАТАЛИЗАТОРА РЕАКЦИЙ ТРАНСВИНИЛИРОВАНИЯ АЗОЛОВ

  • Ashkharuhi G. Aleksanyan Научно-технический центр органической и фармацевтической химии НАН РА
  • Movses A. Aghekyan Научно-технический центр органической и фармацевтической химии НАН РА
  • Robert M. Hakobyan Научно-технический центр органической и фармацевтической химии НАН РА
  • Aleksan G. Shahkhatuni Научно-технический центр органической и фармацевтической химии НАН РА
  • Astghik A. Shahkhatuni Научно-технический центр органической и фармацевтической химии НАН РА
  • Hovhannes S. Attaryan Научно-технический центр органической и фармацевтической химии НАН РА
Ключевые слова: винилирование, азолы, катализатор на полимерном носителе, хитозан, винилацетат, соли ртути

Аннотация

Нанесение гомогенных катализаторов - соединений переходных металлов – на органические полимеры имеет большой интерес среди исследователей. Наиболее исчерпывающий анализ в этой области был опубликован в 1983 г, где подробно рассматривались результаты 1217 работ, и это число постоянно растет. Гетерогенные катализаторы часто служат очень долго, их легко отделить от реагентов и продуктов реакции и можно многократно использовать. Гомогенный катализатор на гетерогенном носителе действует так, как если бы он находился в растворе, однако одновременно он представляет собой отдельную неподвижную фазу. Исходя из вышесказанного, в этой работе мы попытались использовать хитозан в качестве носителей для ионов двухвалентных металлов, в частности ртути, заранее зная, что хитозан является хорошим лигандом для переходных металлов. Интерес к хитозанам связан с их уникальными физиологическими и экологическими свойствами, такими как биосовместимость, биодеструкция и хелатирующая способность. Описан эффективный и простой способ винилирования азолов в присутствии нанесенной на хитозан гетерогенной каталитической системы ацетата ртути(II). В результате было синтезировано несколько продуктов с высокими выходами. Разработанная методика проста в исполнении, требует меньшего количества катализатора, сокращает время реакции, исключает образование побочных продуктов и обеспечивает более высокие селективные выходы винилированных продуктов. Кроме того, можно извлекать катализатор из реакционной смеси и повторно использовать эту каталитическую систему более четырех раз. Это позволяет уменьшить загрязнение сточных вод ионами ртути.

Для цитирования:

Алексанян А.Г., Агекян М.А., Акопян Р.М., Шахатуни А.Г., Шахатуни А.А., Аттарян О.С. Ацетат ртути(II) на подложке из хитозана в качестве катализатора реакций трансвинилирования азолов. Изв. вузов. Химия и хим. технология. 2024. Т. 67. Вып. 3. С. 119-126. DOI: 10.6060/ivkkt.20246703.6942.

Литература

Becerra D., Abonia R., Castillo J. C. Recent applications of the multicomponent synthesis for bioactive pyrazole derivatives. Molecules. 2022. V. 27. N 15. P. 4723. DOI: 10.3390/molecules27154723.

Chandrasekharan S.P., Dhami A., Kumar S., Mohanan K. Recent advances in pyrazole synthesis employing diazo compounds and synthetic analogues. Org. Biomol. Chem. 2022. V. 20. P. 8787-8817. DOI: 10.1039/D2OB01918C.

Tigreros A., Portilla J. Recent progress in chemosensors based on pyrazole derivatives. RSC Adv. 2020. V. 10. N 33. P. 19693-19712. DOI: 10.1039/D0RA02394A.

Brown A.W. Recent developments in the chemistry of pyrazoles. Adv. Heterocycl. Chem. 2018. V. 126. P. 55-107. DOI: 10.1016/bs.aihch.2018.02.001.

Green M.D., Long T.E. Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies. Polym. Rev. 2009. V. 49. N 4. P. 291-314. DOI: 10.1080/ 15583720903288914.

Kantheti S., Narayan R., Raju K.V.S.N. The impact of 1, 2, 3-triazoles in the design of functional coatings. RSC Adv. 2015. V. 5. N 5. P. 3687-3708. DOI: 10.1039/C4RA12739K.

Oshiro Y., Shirota Y., Mikawa H. Synthesis of polymers with polar side groups. III. Tricyanovinylation of poly (N-vinylindole) and N-Vinylindole—Fumaronitrile copolymer, and dielectric properties of these polymers. Polym. J. 1974. V. 6. N 5. P. 364-369. DOI: 10.1295/polymj.6.364.

Allen Jr, M.H., Hemp S.T., Smith A.E., Long T.E. Controlled radical polymerization of 4-vinylimidazole. Mac-romolecules. 2012. V. 45. P. 3669-3676. DOI: 10.1021/ ma300543h.

Lim H., Nam J.W., Seo E.K., Kim Y.S., Kim H.P. (-)-Nyasol (cis-hinokiresinol), a norneolignan from the rhi-zomes of Anemarrhena asphodeloides, is a broad spec-trum inhibitor of eicosanoid and nitric oxide production. Arch. Pharm. Res. 2009. V. 32. P. 1509-1514. DOI: 10.1007/s12272-009-2102-4.

Beghdadi S., Miladi I.A., Addis D., Romdhane H.B., Bernard J., Drockenmuller E. Synthesis and polymeriza-tion of C-vinyl-and N-vinyl-1, 2, 3-triazoles. Polym. Chem. 2012. V. 3. N 7. P. 1680-1692. DOI: 10.1039/C1PY00446H.

Mondal R., Pal S., Chatterjee U. lkylated imidazole moieties in a cross-linked anion exchange membrane facil-itate acid recovery with high purity. ACS Appl. Polym. Ma-ter. 2021. V. 3. P. 1544-1554. DOI: 10.1021/acsapm.0c01383.

McHugh P.J., Das A.K., Wallace A.G., Kulshrestha V., Shahi V.K., Symes M.D. An Investigation of a (vinylben-zyl) trimethylammonium and N-vinylimidazole-substituted poly (vinylidene fluoride-co-hexafluoropropylene) copol-ymer as an anion-exchange membrane in a lignin-oxidising electrolyser. Membranes. 2021. V. 11. P. 425. DOI: 10.3390/membranes11060425.

Farrokhi M., Abdollahi M. Enhancing medium/high temperature proton conductivity of poly (benzimidazole)-based proton exchange membrane via blending with poly (vinyl imidazole-co-vinyl phosphonic acid) copolymer: Proton conductivity-copolymer microstructure relationship. Eur. Polym. J. 2020. V. 131. P. 109691. DOI: 10.1016/j.eurpolymj.2020.109691.

Lebedeva O.A., Sedelkin V.M., Potekhin L.N. Production technology and characteristics of chitosan nanofiltration membranes. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 1. P. 58-65. DOI: 10.6060/ ivkkt.20226501.6340.

Watanabe H., Kanazawa A., Aoshima S. Stereospecific living cationic polymerization of N-vinylcarbazole through the design of ZnCl2-derived counteranions. ACS Macro Lett. 2017. V. 6. P. 463-467. DOI: 10.1021/acsmacrolett.7b00175.

Ivashkevich O.A., Gaponik P.N., Bubel O.N., Kovalyova T.B. Copolymerization reactivities, electron structure and nuclear magnetic resonance spectra of vinylazoles. Makromol. Chem. 1988. V. 189. P. 1363-1372. DOI: 10.1002/macp. 1988.021890614.

Pekel N., Güven O. Investigation of complex formation between poly (N-vinyl imidazole) and various metal ions using the molar ratio method. Colloid Polym. Sci. 1999. V. 277. P. 570-573. DOI: 10.1007/s003960050426.

Wang X., Li J., Mason R., Bu X.R., Harrison J. Combined phase transfer catalysis and ultrasound to enhance tandem alkylation of azo dyes. Tetrahedron 2002. V. 58. N 19. P. 3747–3753. DOI: 10.1016/S0040-4020(02)00331-9.

Abele E., Dzenitis O., Rubina K., Lukevics E. Synthesis of N-and S-vinyl derivatives of heteroaromatic com-pounds using phase-transfer catalysis. Chem. Heterocycl. Compd. 2002. V. 38. P. 682–685. DOI: 10.1023/A:1019913218413.

Zakaryan G.B., Hayotsyan S.S., Attaryan H.S., Hasratyan G.V. Dehydrochlorination of 1-(2-chloroethyl) azoles in aqueous solution of N-methylmorpholine N-oxide. Russ. J. Gen. Chem. 2016. 86. P. 414–416. DOI: 10.1134/S1070363216020377.

Rodygin K., Bogachenkov A., Ananikov V. Vinylation of a secondary amine core with calcium carbide for efficient postmodification and access to polymeric materials. Mol-ecules 2018. V. 23. N 3. P. 648. DOI: 10.3390/molecules23030648.

Teong S.P., Chua A.Y.H., Deng S., Li X., Zhang Y. Direct vinylation of natural alcohols and derivatives with calcium carbide. Green Chem. 2017. V. 19. P. 1659-1662. DOI: 10.1039/C6GC03579E.

Rattanangkool E., Vilaivan T., Sukwattanasinitt M., Wacharasindhu S. An Atom‐Economic Approach for Vi-nylation of Indoles and Phenols Using Calcium Carbide as Acetylene Surrogate. Eur. J. Org. Chem. 2016. P. 4347-4353. DOI: 10.1002/ejoc.201600666.

Shmidt E.Y., Protsuk N.I., Vasil’tsov A.M., Ivanov A.V., Mikhaleva A.I., Trofimov B.A. Improved method for the synthesis of 1-vinylindole. Chem. Heterocycl. Compd. 2013. V. 49. P. 404-407. DOI: 10.1007/s10593-013-1260-y.

Yan L., Chu B., Zhong S., Fu Z., Cheng Y. Synthesis of N-vinyl pyrrolidone by acetylene process in a microreac-tor. Adv. Chem. Eng. 2020. V. 2. P. 100018. DOI: 10.1016/j.ceja. 2020.100018.

Sitte N.A., Menche M., Tuzina P., Bienewald F., Schäfer A., Comba P., Rominger F., Hashmi A.S.K., Schaub T. Phosphine-Catalyzed Vinylation at Low Acetylene Pres-sure. J. Org. Chem. 2021. V. 86. N 18. P. 13041-13055. DOI: 10.1021/acs.joc.1c01807.

Motornov V., Latyshev G.V., Kotovshchikov Y.N., Lukashev N.V., Beletskaya I.P. Copper (I)‐Catalyzed Re-gioselective Chan‐Lam N2‐Vinylation of 1, 2, 3‐Triazoles and Tetrazoles. Adv. Synth Catal. 2019. V. 361. P. 3306–3311. DOI: 10.1002/adsc.201900225.

Lebedev A.Y., Izmer V.V., Kazyul’kin D.N., Beletskaya I.P., Voskoboynikov A.Z. Palladium-catalyzed stereocon-trolled vinylation of azoles and phenothiazine. Org. Lett. 2002. V. 4. N 4. P. 623–626. DOI: 10.1021/ol0172370.

Song R.-J., Deng C.-L., Xie Y.-X., Li J.-H. Solventfree copper/iron co-catalyzed N-arylation reactions of nitrogen-containing heterocycles with trimethoxysilanes in air. Tet-rahedron Lett. 2007. V. 48. P. 7845–7848. DOI: 10.1016/j.tetlet.2007.08.117.

Arsenyan P., Petrenko A., Paegle E., Belyakov S. Direct N-and C-vinylation with trimethoxyvinylsilane. Mendeleev Commun. 2011. V. 21. P. 326–328. DOI: 10.1016/j.mencom.2011.11.011.

Taillefer M., Ouali A., Renard B., Spindler J.F. Mild Copper‐Catalyzed Vinylation Reactions of Azoles and Phenols with Vinyl Bromides. Chem. Eur. J. 2006. V. 12. N 20. P. 5301-5313. DOI: 10.1002/chem.200501411.

Sk M.R., Maji M.S. Cobalt (III)-catalyzed ketone-directed C–H vinylation using vinyl acetate. Org. Chem. Front. 2020. V. 7. P. 19-24. DOI: 10.1039/C9QO01164A.

Mei S.-T., Jiang K., Wang N.-J., Shuai L., Yuan Y., Wei Y. Rhodium‐Catalyzed Direct C–H Vinylation of Arenes To Access Styrenes with Vinyl Acetate as a Vinyl Source. Eur. J. Org. Chem. 2015. P. 6135-6140. DOI: 10.1002/ejoc.201500945.

Kimura J., Nakamichi S., Ogawa S., Obora Y. Iridium-catalyzed vinylation of carbazole derivatives with vinyl acetate. Synlett. 2017. V. 28. P. 719-723. DOI: 10.1055/s-0036-1588927.

Xu J., Fu Y., Xiao B., Gong T., Guo Q. Room-temperature palladium (II)-catalyzed N-vinylation of sul-fonamides and acylamides with vinyl acetate as vinyl source. Tetrahedron Lett. 2010. V. 51. P. 5476-5479. DOI: 10.1016/j.tetlet.2010.08.029.

Kizhnyaev V.N., Pokatilov F.A., Tsypina N.A., Ratovskii G.V., Vereshchagin L.I., Smirnov A.I. Synthesis of N-vinyl-1, 2, 3-triazole derivatives. Russ. J. Org. Chem. 2002. V. 38. N 7. P. 1056–1059. DOI: 10.1023/A:1020874201056.

Kolesnikov H.S., Tevlina A.S., Grandberg I.I., Vasyukov S.Y., Sharova G.I. Polymerization and copol-ymerization of N-vinyl-3, 5-dimethylpyrazole. Polym. Sci. USSR. 1967. V. 9. P. 2820-2825. DOI: 10.1016/0032-3950(67)90388-7.

Sarkar S., Guibal E., Quignard F., SenGupta A.K. Polymer-supported metals and metal oxide nanoparticles: syn-thesis, characterization, and applications. J. Nanopart. Res. 2012. V. 14. P. 1-24. DOI: 10.1007/s11051-011-0715-2.

Yolsal U., Horton T.A., Wang M., Shaver M.P. Polymer-supported Lewis acids and bases: Synthesis and applica-tions. Prog. Polym. Sci. 2020. V. 111. P. 101313. DOI: 10.1016/ j.progpolymsci.2020.101313.

Rajaram R., Angaiah S., Lee Y.R. Polymer supported electrospun nanofibers with supramolecular materials for biological applications–a review. Int. J. Polym. Mater. 2022. P. 1-17. DOI: 10.1080/00914037.2022.2075871.

Sruthi P.R., Anjali S., Varghese N., Anas S. Novel and efficient polymer supported copper catalyst for heck reaction. J. Organomet. Chem. 2020. P. 121354. DOI: 10.1016/j.jorganchem.2020.121354.

Nasrollahzadeh M., Motahharifar N., Ghorbannezhad F., Soheili Bidgoli N.S., Baran T., Varma R.S. Recent advances in polymer supported palladium complexes as (nano) catalysts for Sonogashira coupling reaction. Mol. Catal. 2020. V. 480. P. 110645. DOI: 10.1016/j.mcat.2019.110645.

Patil R., Chavan J., Dalal D.S., Shinde V.S., Beldar A. Biginelli reaction: Polymer supported catalytic approaches. ACS Comb. Sci. 2019. V. 21. P. 105-148. DOI: 10.1021/acscombsci.8b00120.

Rostamnia S., Hassankhani A. Application of biode-gradable supramolecular polymer-supported catalyst for multicomponent synthesis of α-aminophosphonates Kabachnik–Fields reaction. Supramol. Chem. 2014. V. 26. P. 736–739. DOI: 10.1080/10610278.2013.863312.

Rizzo G., Albano G., Presti M.Lo, Milella A., Omenetto F.G., Farinola G.M. Palladium Supported on Silk Fibroin for Suzuki–Miyaura Cross‐Coupling Reactions. Eur. J. Org. Chem. 2020. P. 6992–6996. DOI: 10.1002/ejoc.202001120.

Saranya T.V., Sruthi P.R., Ayana N., Anas S. An Effi-cient Polymer Supported Palladium Catalyst for ortho Se-lective C− H Olefination of Anilides. Chem. Select. 2021. V. 6. P. 2615-2620. DOI: 10.1002/slct.202100052.

Dolgopyatova N.V., Novikov V.Yu., Kuchina Yu.A., Konovalova I.N. Effect of deacetylation conditions on the physicochemical prop-erties of chitosan from crustacean shells. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 5. P. 77-86. DOI: 10.6060/ivkkt.20226505.6563.

Kumar M.R., Muzzarelli R., Muzzarelli C., Sashiwa H., Domb A.J. Chitosan chemistry and pharmaceutical per-spectives. Chem. Rev. 2004. V. 104. P. 6017-6084. DOI: 10.1021/cr030441b.

Hamedi H., Moradi S., Hudson S.M., Tonelli A.E., King M.W. Chitosan based bioadhesives for biomedical appli-cations. Carbohydr. Polym. 2022. P. 119100. DOI: 10.1016/ j.carbpol.

Niculescu A.G., Grumezescu A.M. Applications of chitosan-alginate-based nanoparticles An up-to-date review. Nanomaterials. 2022. V. 12. P. 186. DOI: 10.3390/nano12020186.

Kou S.G., Peters L., Mucalo M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydr. Polym. 2022. P. 119132. DOI: 10.1016/j.carbpol.2022.119132.

Lee M., Chen B.-Y., Den W. Chitosan as a natural polymer for heterogeneous catalysts support: a short review on its applications. Appl. Sci. 2015. V. 5. P. 1272-1283. DOI: 10.3390/ app5041272.

Naidenko E.V., Makarov S.V., Pokrovskaya E.A., Nikulin A.M. Modification of chitosan by thiourea dioxide. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 1. P. 73-78. DOI: 10.6060/ivkkt.20216401.6282.

Molnár Á. The use of chitosan-based metal catalysts in organic transformations. Coord. Chem. Rev. 2019. V. 388. P. 126–171. DOI: 10.1016/j.ccr.2019.02.018.

Kadib A. Chitosan as a sustainable organocatalyst: a concise overview. ChemSusChem 2014. V. 8. P. 217–244. DOI: 10.1002/cssc.201402718.

Sahu P.K., Sahu P.K., Gupta S.K., Agarwal D.D. Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res. 2014. V. 53. P. 2085–2091. DOI: 10.1021/ie402037d.

Sakthivel B., Dhakshinamoorthy A.J. Chitosan as a reus-able solid base catalyst for Knoevenagel condensation reaction. Colloid Interface Sci. 2017. V. 485. P. 75–80. DOI: 10.1016/ j.jcis.2016.09.020.

Khalil K., Al-Matar H. Chitosan based heterogeneous catalyses: Chitosan-grafted-poly (4-vinylpyridne) as an ef-ficient catalyst for michael additions and alkylpyridazinyl carbonitrile oxidation. Molecules. 2013. V. 18. P. 5288–5305. DOI: 10.3390/molecules18055288.

Kyzas G.Z., Deliyanni E.A. Mercury (II) removal with modified magnetic chitosan adsorbents. Molecules. 2013. V. 18. P. 6193-6214. DOI: 10.3390/molecules18066193.

Goci M.C., Leudjo Taka A., Martin L., Klink M.J. Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution. Polymers. 2023. V. 15. P. 482. DOI: 10.3390/polym15030482.

Aleksanyan A.G., Hakobyan R.M., Shahkhatuni A.G., Shahkhatuni A.A., Attaryan H.S. Direct demonstration of tautomeric nature of 4‐bromo‐3 (5)‐methylpyrazoles. J. Heterocycl. Chem. 2022. 59. 11. P. 1927-1934. DOI: 10.1002/jhet.4529.

Cristau H.J., Cellier P.P., Spindler J.F., Taillefer M. Mild Conditions for Copper‐Catalysed N‐Arylation of Py-razoles. Eur. J. Org. Chem. 2004. P. 695-709. DOI: 10.1002/ejoc.200300709.

Tserunyan V.V., Asratyan G.V., Darbinyan E.G. Intra-molecular hydrogen bonds in 1-vinyl-5-pyrazole carbox-ylate esters. Chem. Heterocycl. Compd. 1988. V. 24. P. 1186-1186. DOI: 10.1007/BF00475701.

Chen X., Zu Y., Xie H., Kemas A.M., Gao Z. Coordination of mercury (II) to gold nanoparticle associated nitro-triazole towards sensitive colorimetric detection of mercuric ion with a tunable dynamic range. Analyst. 2011. V. 136. P. 1690-1696. DOI: 10.1039/C0AN00903B.

Tikhonova I.A., Tugashov K.I., Dolgushin F.M., Yakovenko A.A., Petrovskii P.V., Furin G.G., Shur V.B.J. Coordination chemistry of anticrowns: Complexation of cyclic trimeric perfluoro-o-phenylenemercury with nitro compounds. Organomet. Chem. 2007. V. 692. P. 953-962. DOI: 10.1016/j.jorganchem.2006.10.048.

Опубликован
2024-01-27
Как цитировать
Aleksanyan, A. G., Aghekyan, M. A., Hakobyan, R. M., Shahkhatuni, A. G., Shahkhatuni, A. A., & Attaryan, H. S. (2024). АЦЕТАТ РТУТИ(II) НА ПОДЛОЖКЕ ИЗ ХИТОЗАНА В КАЧЕСТВЕ КАТАЛИЗАТОРА РЕАКЦИЙ ТРАНСВИНИЛИРОВАНИЯ АЗОЛОВ. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 67(3), 119-126. https://doi.org/10.6060/ivkkt.20246703.6942
Раздел
ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ неорг. и органических веществ, теоретические основы