THE IMPACT OF WATER-SOLUBLE GUANIDINE-CONTAINING (CO)POLYMERS ON ASPERGILLUS NIGER AND THE ASSESSMENT OF THEIR EFFICIENCY

  • Sergey A. Stelmakh Baikal Institute of Nature Management of SB of the RAS
  • Natalya M. Garkusheva Baikal Institute of Nature Management of SB of the RAS
  • Elena V. Lavrentieva Institute of General and Experimental Biology of the Siberian Branch of the RAS
  • Maria N. Grigor’eva Baikal Institute of Nature Management of SB of the RAS
  • Oleg S. Ochirov Baikal Institute of Nature Management of SB of the RAS
  • Valeria O. Okladnikova Baikal Institute of Nature Management of SB of the RAS
Keywords: water-soluble guanidine-containing (co)polymers, hydrophobic properties, conformation, antiseptic, Aspergillus niger, fungicidal activity, wood-decay fungus

Abstract

The presented work examines the effect of modified water-soluble guanidine-containing (co)polymers on a strain of the mold Aspergillus niger (A. niger). It has been established that the main component of widely used biocides, polyhexamethylene guanidine hydrochloride (PHMGgx), is the least effective at inhibiting the growth of mold fungi, and an increase in the content of octamethylene fragments in the macromolecular structure, that is, an increase in hydrophobicity, leads to an increase in the fungicidal effect and completely suppresses the growth of fungal cells. Laboratory experiments were carried out to study the effect of (co)polymers when they were added to a nutrient medium in Petri dishes, as well as when the surface was treated with solutions of different concentrations of a real object - healthy Scots Pine (Pinus sylvestris) wood. It was determined that the maximum inhibition of A. niger growth is achieved on a nutrient medium containing 30 and 50% octamethylenediamine, which is comparable to the data obtained when assessing the fungicidal effect on Pinus sylvestris wood. In the course of the study, the obtained dependences suggest a mechanism for the interaction of the fungal cell wall with the (co)polymer, where at the first stage of exposure, sorption of polymer macromolecules by the fungal cell wall membrane occurs due to the proteins contained in it – «adhesins», followed by a violation of the integrity of the cell and ends with osmotic lysis. The effectiveness of the studied compounds was assessed and their classification was made according to the degree of protective properties against wood damage by moldy fungi. According to the classification, the studied modified water-soluble guanidine-containing (co)polymers are effective and highly effective means of protective ability to resist infection of the wood surface by mold fungi.

For citation:

Stelmakh S.A., Garkusheva N.M., Lavrentieva E.V., Grigor’eva M.N., Ochirov O.S., Okladnikova V.O. The impact of water-soluble guanidine-containing (co)polymers on Aspergillus niger and the assessment of their efficiency. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 4. P. 126-133. DOI: 10.6060/ivkkt.20246704.6948.

References

Analiticheskaya zapiska: O zhilishchnom stroitel'stve v rossijskoj federacii v 2021 godu. Elektron. st. Rezhim dostupa k st. URL: https://rosstat.go.ru/storage/mediabank/Analt_zap_Jilc-troit_RF_2021.pdf. (in Russian).

Stroitel'stvo v Rossii. 2022: M.: Stat. sb. / Rosstat. 2022. 148 p. (in Russian).

Kunitskaya O.A. A biotechnological method of protecting wood from fungal lesions. Aktual. Napravleniya Nauch. Issled. XXI v: Teoriya Prakt. 2014. V. 2. N 4–3 (9–3). P. 440-444 (in Russian). DOI: 10.12737/6197.

Skugoreva S.G., Domracheva L.I., Trefilova L.V., Starikov P.A., Ashikhmina T.Ya. Biosecurity of wood from microbial damage (review). Teoret. Prikl. Ekol. 2023. N 1. P. 6-15 (in Russian). DOI: 10.25750/1995-4301-2023-1-006-015.

Krasnopevtseva E.A., Mal'tsev S.A., Krasnopevtseva N.A., Krasnopevtseva I.V., Kozina L.N. Dangerous neighbors: mold in residential premises. Sat. tr. All-Russian. scientific and practical. conf. Environmental problems and public health. Penza. 2016. P. 57-62 (in Russian).

Zagorodnyuk L.H., Lysikova N.V. Harmful effects of microorganisms on human health in residential premises, methods of their destruction by biocidal solutions. Tez. dokl. International Scientific and Technical conf. Innova-tive approaches to solving modern problems of rational use of natural resources and environmental protection. Belgorod: Izd-vo BGTU im. V.G. Shuhova. 2019. V. 3. P. 43-49 (in Russian).

Skugoreva S.G. Substances of plant origin in the protection of wood from the action of microorganisms-destructors. Tez. dokl. XVIII All-Russian Scientific.- practical conf. Ecology of the native land: problems and ways to solve them. Kirov: Izd-vo Vyatskogo gosudar-stvennogo universiteta. 2023. V. 3. P. 298-302 (in Russian).

Teptereva G.A., Pakhomov S.I., Chetvertneva I.A., Karimov E.H., Egorov M.P., Movsumzade E.M., Evstigneev E.I., Vasiliev A.V., Sevastyanova M.V., Voloshin A.I., Nifantyev N.E., Nosov V.V., Dokichev V.A., Babaev E.R., Rogovina S.Z., Berlin A.A., Fakhreeva A.V., Baulin O.A., Kolchina G.Yu., Voronov M.S., Staroverov D.V., Kozlovsky I.A., Kozlovsky R.A., Tarasova N.P., Zanin A.A., Krivoborodov E.G., Karimov O.Kh, Flid V.R., Loginova M.E. Renewable natural raw materials. Structure, properties, application prospect. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 9. P. 4–121 (in Russian). DOI: 10.6060/ivkkt.20216409.6465.

Mognonov D.M., Stel'makh S.A., Ayurova O.Zh., Grigor'eva M.N., Ochirov O.S., Buyantuev S.L., Leb-edeva S.N., Zhamsaranova S.D. Antiseptic for wooden building structures and products based on water-soluble polyguanidines. Stroit. Mater. 2018. N 1-2. P. 91-94. (in Russian).

Stelmakh S.A., Grigor’eva M.N., Garkusheva N.M., Lebedeva S.N., Ochirov O.S., Mognonov D.M., Zham-saranova S.D., Batoev V.B. Studies of new biocidal polyguanidines: antibacterial action and toxicity. Polym. Bull. 2021. V. 78. P. 1997–2008. DOI: 10.1007/s00289-020-03197-1.

Grigor'eva M.N., Stel'mah S.A., Astahova S.A., Center I.M., Bazaron L.U., Batoev V.B., Mognonov D.M. Syn-thesis of polyalkylguanidine hydrochloride copolymers and their antibacterial activity against opportunistic mi-croorganisms Bacillus cereus and Escherichia coli. Khim.-Farm. Zhurn. 2015. V. 49. N 2. P. 29-33 (in Russian).

Grigor'eva M.N., Stel'makh S.A., Bazaron L.U., Mognonov D.M. Dependence of the viscosity character-istics of polyhexamethylene guanidine hydrochloride on the synthesis conditions. Vysokomol. Soed. Ser. B. 2014. V. 56. N 3. P. 245 (in Russian). DOI 10.7868/S2308113914030061.

Determination of the sensitivity of microorganisms to antibacterial drugs: Methodological guidelines. Moscow: Federal Center for State Sanitary and Epidemiological Supervision of the Ministry of Health of the Russian Federation. 2004. 91 p. (in Russian).

GOST 30028.4.- 2006. Protective products for wood. Express method for evaluating the effectiveness against wood-coloring and mold fungi: date of introduction 2007-07-01 / Federal Agency for Technical Regulation. Moscow: Standartinform. 2006. 8 p. (in Russian).

Methods of laboratory research and testing of medical preventive disinfectants to assess their effectiveness-news and safety: Manual. M.: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor. 2010. 615 p. (in Russian).

Grigor'eva M.N., Stel'makh S.A., Astakhova S.A., Tsenter I.M., Bazaron L.U., Batoev V.B., Mognonov D.M. Biocidal action of copolymers based on aliphatic diamines and guanidine hydrochloride. J. Appl. Polym. Sci. 2014. V. 131. N 11. P. 40319. DOI: 10.1002/app.40319.

Ochirov O.S., Burasova E.G., Stel'makh S.A., Grigor'eva M.N., Okladnikova V.O., Mognonov D.M. Antimicrobial activity of polyhexamethylene guanidine hydrochloride derivatives in relation to multi-resistant strains of microorganisms. Infekts. Immunitet. 2022. V. 12. N 1. P. 193-196 (in Russian). DOI: 10.15789/2220-7619-AAO-1751.

Agustinho D.P., Miller L.C., Li L.X., Doering T.L. Peeling the onion: the outer layers of Cryptococcus neofor-mans. Mem. Inst. Oswaldo Cruz. 2018. 113 (7). e180040. DOI: 10.1590/0074-02760180040.

Garcia-Rubio R., Oliveira H. C., Rivera J., Trevijano-Contador N. The fungal cell wall: Candida, Cryptococ-cus, and Aspergillus species. Front. Microbiol. 2020. V. 10. P. 2993. DOI: 10.3389/fmicb.2019.02993.

Ghassemi N., Poulhazan A., Deligey F., Mentink-Vigier F., Marcotte I., Wang T. Solid-state NMR investigations of extracellular matrixes and cell walls of algae, bacteria, fungi, and plants. Chem. Rev. 2022. 122. P. 10036-10086. DOI: 10.1021/acs.chemrev.1c00669.

Gow N.A.R., Lenardon M.D. Architecture of the dynamic fungal cell wall. Nat. Rev. Microbiol. 2023. V. 21. P. 248-259. DOI: 10.1038/s41579-022-00796-9.

Municio-Diaz C., Muller E., Drevensek S., Fruleux A., Lorenzetti E., Boudaoud A., Minc N. Mechanobiology of the cell wall – insights from tip-growing plant and fun-gal cells. J. Cell Sci. 2022. 135(21). jcs259208. DOI: 10.1242/jcs.259208.

Latgé J.-P., Beauvais A., Chamilos G. The cell wall of the human fungal pathogen Aspergillus fumigatus: bio-synthesis, organization, immune response, and virulence. Annu. Rev. Microbiol. 2017. V. 71. P. 99-116. DOI: 10.1146/annurev-micro-030117-020406.

Free S.J. Chapter two - fungal cell wall organization and biosynthesis. Adv. Genet. 2013. V. 81. P. 33-82. DOI: 10.1016/ B978-0-12-407677-8.00002-6.

Sundstrom P. Adhesion in Candida spp. Cell. Microbiol. 2002. 4(8). P. 461-469. DOI: 10.1046/j.1462-5822.2002.00206.x.

Taib M., Pinney J.W., Westhead D.R., McDowall K.J., Adams D.J. Differential expression and extent of fun-gal/plant and fungal/bacterial chitinases of Aspergillus fumigatus. Arch. Microbiol. 2005. 184. P. 78-81. DOI: 10.1007/s00203-005-0028-x.

Gooday G.W. Biosynthesis of the fungal wall-mechanisms and implications the first fleming lecture. J. Gen. Microbiol. 1977. 99. P. 1-11. DOI: 10.1099/00221287-99-1-1.

Gubbins P.O., Anaissie E.J. Chapter 7 - Antifungal therapy. Clin. Microbiol. 2009. V. 805. P. 161-195. DOI: 10.1016/B978-1-4160-5680-5.00007-4.

Stelmakh S.A., Grigor'eva M.N., Tikhonenkov D.V., Ochirov O.S., Mognonov D.M. Assessment of acute and chronic toxicity of water-soluble polyguanidines towards hydrobionts. IOP Conf. Series: Earth Environ. Sci. 2019. 320 (1). 012047. DOI: 10.1088/1755-1315/320/1/012047.

Published
2024-03-04
How to Cite
Stelmakh, S. A., Garkusheva, N. M., Lavrentieva, E. V., Grigor’eva, M. N., Ochirov, O. S., & Okladnikova, V. O. (2024). THE IMPACT OF WATER-SOLUBLE GUANIDINE-CONTAINING (CO)POLYMERS ON ASPERGILLUS NIGER AND THE ASSESSMENT OF THEIR EFFICIENCY. ChemChemTech, 67(4), 126-133. https://doi.org/10.6060/ivkkt.20246704.6948
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)