EFFECTS OF POLYCHLORINATED N-ALKANES ON THE CHEMICAL STRUCTURE, MECHANICAL AND THERMAL PROPERTIES OF THE STYRENE-BUTADIENE STYRENE TRIBLOCK COPOLYMER

  • Ksenia V. Sukhareva Plekhanov Russian University of Economics
  • Anastasia D. Buluchevskaya Plekhanov Russian University of Economics
  • Valeria O. Besedina MIREA – Russian Technological University
  • Yuliana V. Grosheva Plekhanov Russian University of Economics
  • Lydmila R. Lyusova MIREA – Russian Technological University
  • Anatoly A. Popov Plekhanov Russian University of Economics
Keywords: styrene-butadiene-styrene triblock copolymer (SBS), polychlorinated n-alkanes, chlorinated paraffin, FT-IR spectroscopy, thermogravimetric analysis, thermal properties, solution mixing

Abstract

The development of new functional materials based on modified styrene-butadiene block copolymers will enable the creation of materials with improved resistance to gasoline, heat, light, ozone, and enhanced adhesive properties. This study investigates the influence of chlorinated paraffin on the properties of the styrene-butadiene-styrene triblock copolymer. Chlorinated paraffins (CP), complex mixtures of polychlorinated n-alkanes, were used as halogen-containing modifiers for the thermoplastic elastomer to enhance its tensile and adhesive strength and thermal properties. Composite materials based on styrene-butadiene-styrene copolymer (SBS) with various amounts of chlorinated paraffin were prepared using a solution mixing method. The analysis of the ATR/FT-IR spectra of neat SBS and SBS/CP revealed the appearance of new characteristic absorption bands at 1260, 1090, 1020, and 800 cm-1. The study determined that the amount of chlorinated paraffin strongly influenced specific properties of the examined TPE. It was observed that chlorinated paraffin improved the thermal stability of the composites. The onset temperature of degradation increased to 262 °C (a rise of 57 °C), while the maximum degradation temperature slightly increased from 463 to 467 °C. The impact of the concentration of chlorinated paraffin on the chemical structure and tensile properties was evaluated and compared to those of neat styrene-butadiene-styrene. It was estimated that SBS composites with 5 ppm. CPs are characterized by improved strength properties in comparison with the original SBS sample.

For citation:

Sukhareva K.V., Buluchevskaya A.D., Besedina V.O., Grosheva Yu.V., Lyusova L.R., Popov А.А. Effects of polychlorinated n-alkanes on the chemical structure, mechanical and thermal properties of the styrene-butadiene styrene triblock copolymer. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 6. P. 100-108. DOI: 10.6060/ivkkt.20246706.6973.

References

Guvalov A.A., Mamedov A.D., Kakhramanov N.T. Effect of modificators on the properties of bitumen and asphalt concrete. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 10. P. 98104. DOI: 10.6060/ivkkt.20216410.6383.

Gopinath S., Radhakrishnan N.P., Mathew S. Study on thermal and mechanical properties of SBS/PCL based thermo-responsive shape memory polymer nanocomposite actuator. Mater. Today: Proc. 2020. V. 24. P. 1742–1748. DOI: 10.1016/j.matpr.2020.03.598.

Alshammari B.A., Alsuhybani M.S., Almushaikeh A.M. Comprehensive review of the properties and modifications of carbon fiberreinforced thermoplastic composites. Polymers. 2021. V. 13(15). 2474. DOI: 10.3390/polym13152474.

Yasar M., Bayram G., Celebi H. Effect of carbon black and/or elastomer on thermoplastic elastomer-based blends and composites. AIP Conf. Proc. 2015. V. 1664. 120003. DOI: 10.1063/1.4918493.

Chen C.-M., Chang H.-L., Lee C.-Y. The dynamic properties at elevated temperature of the thermoplastic polystyrene matrix modified with nano-alumina powder and thermoplastic elastomer. Polymers. 2022. V. 14(16). 3319. DOI: 10.3390/ polym14163319.

Tomacheski D., Pittol M., Simões D.N. Influence of natural ageing on mechanical, thermal and antimicrobial properties of thermoplastic elastomers containing silver nanoparticles and titanium dioxide. Polym. Bull. 2018. V. 75(9). P. 3917–3934. DOI: 10.1007/s00289-017-2245-2.

Ribeiro V. F., Simões D.N., Pittol M. Effect of copper nanoparticles on the properties of SEBS/PP compounds. Polym. Testing. 2017. V. 63. P. 204–209. DOI: 10.1016/ j.polymertesting.2017.07.033.

Marchini L.G., Parra, D.F., Rangari V.K. Incorporation of silver nanoparticles in zinc oxide matrix in polyester thermo-plastic elastomer (TPE-E) aiming antibacterial activity. Mag-nesium Technol. 2019. P. 79–88. DOI: 10.1007/978-3-030-05749-7_9.

Król-Morkisz K., Pielichowska K. Thermal decomposition of polymer nanocomposites with functionalized nanoparticles. Polymer Composites with Functionalized Nanoparticles. Else-vier. 2019. P. 405–435. DOI: 10.1016/B978-0-12-814064-2.00013-5.

Ez‐Zahraoui S., Sabir S., Berchane S. Toughening effect of thermoplastic polyurethane elastomer on the properties of fly a reinforced polypropylene‐based composites. Polym. Comp. 2023. V. 44 (3). P. 1534–1545. DOI: 10.1002/pc.27186.

Kakhramanov N.T., Hasanova A.A., Allahverdiyeva K.V. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. Т. 65. Вып. 8. С. 125-133. DOI: 10.6060/ivkkt.20226508.6583.

Rothon R., DeArmitt C. Fillers (Including Fiber Reinforce-ments). Brydson’s Plastics Materials. Elsevier. 2017. P. 169–204. DOI: 10.1016/B978-0-323-35824-8.00008-6.

Chernyy S., Ullah S., Jomaas G. Modification of poly(styrene-block-butadiene-block-styrene) [SBS] with phosphorus containing fire retardants. Eur. Polym. J. 2015. V. 70. P. 136–146. DOI: 10.1016/j.eurpolymj.2015.07.015.

Ching Y.C., Gunathilake T.U., Ching K.Y. Effects of high temperature and ultraviolet radiation on polymer composites. Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier. 2019. P. 407–426. DOI: 10.1016/B978-0-08-102290-0.00018-0.

Brostow W., Lobland H., Hnatchuk N. Improvement of scratch and wear resistance of polymers by fillers including nanofillers. Nanomaterials. 2017. V. 7 (3). 66. DOI: 10.3390/ nano7030066.

Peponi L., Puglia D., Torre L. Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater. Sci. Eng.: R: Rep. 2014. V. 85. P. 1–46. DOI: 10.1016/ j.mser.2014.08.002.

Dubey K.A., Hassan P.A., Bhardwaj Y.K. High performance polymer nanocomposites for structural applications. Mater. Under Extreme Conditions. 2017. P. 159-194. DOI: 10.1016/B978-0-12-801300-7.00005-X.

Wang Z., Zhang Y., Du F. Thermoplastic elastomer based on high impact polystyrene/ethylene-vinyl acetate copolymer/waste ground rubber tire powder composites compatibil-ized by styrene-butadiene-styrene block copolymer. Mater. Chem. Phys. 2012. V. 136(2–3). P. 1124–1129. DOI: 10.1016/j.matchemphys.2012.08.063.

Sukhareva K.V., Sukharev N.R., Levina I.I. Solvent swelling-induced halogenation of butyl rubber using polychlo-rinated n-alkanes: structure and properties. Polymers. 2023. V. 15(20). 4137. DOI: 10.3390/polym15204137.

Drobny J. Thermoplastic elastomers based on halogen-containing polyolefins. Handbook of Thermoplastic Elastomers. 2007. P. 201–214. DOI: 10.1016/B978-081551549-4.50009-8.

Wittenberg E., Abetz V. New post modification route for styrene butadiene copolymers leading to supramolecular hydrogen bonded networks - synthesis and thermodynamic analysis of complexation. Polymer (Guildf). 2017. V. 121. P. 304–311. DOI: 10.1016/j.polymer.2017.06.001.

Ashok N., Balachandran M., Lawrence F. EPDM-chlorobutyl rubber blends in γ-radiation and hydrocarbon environment: mechanical, transport, and ageing behavior. J. Appl. Polym. Sci. 2017. V. 134 (33). 45195. DOI:10.1002/app.45195.

Pazur R.J., Petrov I. The thermo-oxidation of chlorinated and brominated isobutyleneco-isoprene polymers: activation energies and reactions from room temperature to 100 °C. Polym. Degrad. Stabil. 2015. V. 121. P. 311–320. DOI: 10.1016/j.polymdegradstab.2015.09.023.

Su T.-T., Jiang H., Gong H. Thermal stabilities and thermal degradation kinetics of a styrene-butadiene-styrene star block copolymer. Polym.-Plast. Technol. Eng. 2009. V. 48(5). P. 535–541. DOI: 10.1080/03602550902824341.

Zhang J., Luo H., Zhou X. Epoxy resin adhesives: modification and applications. Epoxy-Based Composites. IntechOpen. 2022. DOI: 10.5772/intechopen.101971.

Chudzik J., Bieliński D.M., Demchuk Y. Influence of modified epoxy dian resin on properties of nitrile-butadiene rubber (NBR). Materials. 2022. V. 15(8). 2766. DOI: 10.3390/ma15082766.

Kozorez M.D., Kotova S.V., Lyusova L.R. The role of surfactants in adhesives based on nitrile rubbers. Kauchuk Re-zina/Adhesion. 2023. V. 82. N 4. P. 186–190. DOI:10.47664/0022-9466-2023-82-4-186-190.

Published
2024-05-04
How to Cite
Sukhareva, K. V., Buluchevskaya, A. D., Besedina, V. O., Grosheva, Y. V., Lyusova, L. R., & Popov, A. A. (2024). EFFECTS OF POLYCHLORINATED N-ALKANES ON THE CHEMICAL STRUCTURE, MECHANICAL AND THERMAL PROPERTIES OF THE STYRENE-BUTADIENE STYRENE TRIBLOCK COPOLYMER. ChemChemTech, 67(6), 100-108. https://doi.org/10.6060/ivkkt.20246706.6973
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)