OLEIC ACID AS AN EFFECTIVE SURFACTANT FOR POLY (LACTIC ACID) MICROPARTICLE: A DFT STUDY

  • A. Naderi Safa Islamic Azad University
  • Ali Sheibani Islamic Azad University
  • Mohammad T. Baei Islamic Azad University
  • S. Zahra Sayyed-Alangi Islamic Azad University
  • E. Tazikeh Lemeski Islamic Azad University
Keywords: oleic acid, poly (lactic acid), surfactant, dispersion, compatibility

Abstract

This study aimed to investigate the interaction of oleic acid (OA) with poly (lactic acid) (PLA) microparticle in chloroform and dichloromethane phases using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The study was conducted at the B3LYP-D3/6-31+G** level of theory. The binding energy, dipole moment. and thermodynamic parameters show that the interaction between OA and PLA via C=O….H-O bonds in the most stable state (state I) in the chloroform phase is stronger than in the dichloromethane phase. Negative values of the thermodynamic parameters in the most stable complex and the MEP graphs showed that OA has a positive impact on the adsorption behavior of the PLA. The presence of OA altered the structure of PLA based on theoretical UV-Vis and Infrared (IR) spectra. The findings revealed that using the OA surfactant can improve dispersion and compatibility with the PLA matrix.

For citation:

Safa A.N., Sheibani A., Baei M.T., Sayyed-Alangi S.Z., Lemeski E.T. Oleic acid as an effective surfactant for poly (lactic acid) microparticle: A DFT study. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 6. P. 65-72. DOI: 10.6060/ivkkt.20246706.7069.

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References

Alqurashi Z.A. Incidence Rate of Thyroid Cancer in Wasit Province From (2017–2021) Related with Age and Gender. J. Biomed. Biochem. 2023. V. 2(3). P. 1-7. DOI: 10.57238/ jbb.2023.6939.1032.

Jalil A. Molecular detection of HPV16 infections in cervical cancer samples of women patients from Dhi-Qar, Iraq. J. Biomed. Biochem. 2023. V. 2(4). P. 9-16. DOI: 10.57238/jbb. 2023.7197.1052.

Abdel-Hussein Z.H., Khdair F.W., Al-fahham A.A. Assessment of Fatigue among Patients with Cancer at Euphrates Cancer Hospital. J. Biomed. Biochem. 2022. V. 1(2). P. 34-40. DOI: 10.57238/jbb.2022.5278.1002.

Al-Hakak A.T., Mohammed H.B. Related Pathological and Social Factors that Delay Early Detection of Breast Cancer among Females. J. Biomed. Biochem. 2022. V. 1(1). P. 1-7. DOI: 10.57238/jbb.2022.17158.

Al-Saadi N., Al-hraishawi H. SOX9 Up-Regulation Can Change Survival and Anticancer Resistance in Different Cancer Type. J. Biomed. Biochem. 2023. V. 2(3). P. 38-44. DOI: 10.57238/jbb.2023.7047.1043.

Ahad A. Direct Oral Anticoagulants in The Treatment of Acute Venous Thromboembolism in Patients with Obesity: A Systematic Review with Meta-Analysis. J. Biomed. Biochem. 2023. V. 2(3). P. 17-27. DOI: 10.57238/jbb.2023.6960.1038.

Ali A., Alattabi R., Kadhim S., Aleiqabie R., Al-Hamadiny S. Comparative Study of Heavy Metal Accumula-tion in Kidney of Gallus gallus Within Polluted Areas in Wasit Province. J. Biomed. Biochem. 2023. V. 2(4). P. 17-21. DOI: 10.57238/ jbb.2023.7040.1040.

Hillel Z., Alabady Z. Targeting of CD38 and other NAD-dependent Enzymes in Leukemia Patients. J. Biomed. Bio-chem. 2023. V. 2(2). P. 26-33. DOI: 10.57238/jbb.2023.6952.1036.

Abd Alameer N.K., Alammar H.A. Some Trace Elements and Oxidative Stress Status in Patients with Chronic Rheumatoid Arthritis. J. Biomed. Biochem. 2023. V. 2(1). P. 21-27. DOI: 10.57238/jbb.2023.6412.1026.

Muhammad M., Juda T., Al-Fadili Z. Assessment of Role s100A7 and Eotaxin (CCL24) in Patients with Atopic Dermatitis in Babylon City. J. Biomed. Biochem. 2023. V. 2(3). P. 8-16. DOI: 10.57238/jbb.2023.6944.1034.

Rihayat T. Synthesis and characterization of PLA-Chitosan-ZnO composite for packaging biofilms. IOP Conf. Ser.: Mater. Sci. and Eng. 2020. 788. 012045. DOI: 10.1088/1757-899X/788/1/012045.

Ankur J. Raval, Jigisha K. Parikh, Meghal A. Desai. Perivascular patch using biodegradable polymers: Investigation of mechanical and drug elution characteristics. J. Mech. Behavior Biomed. Mater. 2023. V. 142. 105853. DOI: 10.1016/ j.jmbbm.2023.105853.

Wang Y., Qu W., Choi S.H. FDA’s regulatory science pro-gram for generic PLA/PLGA-based drug products. Am. Pharm. Rev. 2017. V. 19(4). P. 5–9.

Chia-Teng Chang, Yi-Ting Chen, Yi-Kong Hsieh, Samuel Pratama Girsang, Ryan S. Wang, Yun-Chu Chang, Shu-Huei Shen, Claire R. Shen, Tzu-Ping Lin, Dehui Wan, Jane Wang. Dual-functional antibiofilm polymer com-posite for biodegradable medical devices. Mater. Sci. Eng. C. 2021. V. 123. 111985. DOI: 10.1016/j.msec.2021.111985.

Stipa P., Marano S., Galeazzi R., Minnelli C., Mobbili G., Laudadio E. Prediction of drug-carrier interactions of PLA and PLGA drugloaded nanoparticles by molecular dynamics simulations. Eur. Polym. J. 2021. V. 147. 110292. DOI: 10.1016/j.eurpolymj.2021.110292.

Mallegni N. Poly (lactic acid) (PLA) based tear resistant and biodegradable flexible films by blown film extrusion. Materials. 2018. 11. DOI: 10.3390/ma11010148.

Kale R.D. Preparation and characterization of biocomposite packaging film from poly (lactic acid) and acylated microcrys-talline cellulose using rice bran oil. Int. J. Biol. Macromol. 2018. V. 118. P. 1090–1102. DOI: 10.1016/j.ijbiomac.2018.06.076.

Ibrahim E., Taylor K., Ahmed S., Mahmoud A., Lozano K. Centrifugally spun poly(D, L-lactic acid)-alginate composite microbeads for drug delivery and tissue engineering. Int. J. Biolog. Macromol. 2023. V. 237. 123743. DOI: 10.1016/ j.ijbiomac.2023.123743.

Esthar S., Rajesh J., Ayyanaar S., Gangatharan Vinoth Kumar G., Thanigaivel S., Webster T.J., Rajagopal G. An anti-inflammatory controlled nano drug release and pH-responsive poly lactic acid appended magnetic nanosphere for drug delivery applications. Mater. Today Commun. 2023. V. 34. 105365. DOI: 10.1016/j.mtcomm.2023.105365.

Puricelli C., Luca Gigliotti C., Stoppa I., Sacchetti S., Pantham D., Scomparin A., Rolla R., Pizzimenti S., Dianzani U., Boggio E., Sutti S. Use of Poly Lacticco-glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation. Pharmaceutics. 2023. V. 15(6). 1772. DOI: 10.3390/pharmaceutics15061772.

Sun C. Modified cellulose nanocrystals enhanced the compatibility between PLA and PBAT to prepare a multifunctional composite film, J. Polym. Environ. 2022. V. 30 (8). P. 3139–3149. DOI: 10.1007/s10924-022-02422-4.

Suaduang N. Effect of spent coffee grounds filler on the physical and mechanical properties of poly (lactic acid) bio-composite films. Mater. Today: Proc. 2019. V. 17. P. 2104–2110. DOI: 10.1016/j.matpr.2019.06.260.

Tanase C.E., Spiridon I. PLA/chitosan/keratin composites for biomedical applications. Mater. Sci. Eng. C. 2014. V. 40. P. 242–247. DOI: 10.1016/j.msec.2014.03.054.

Nilsuwan K. Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocolloids. 2020. V. 105. 105792. DOI: 10.1016/j.food-hyd.2020.105792.

Sell S. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polym. Int. 2007. V. 56 (11). P. 1349–1360. DOI: 10.1002/pi.2344.

Zhang Y., Wang B., Cui W., Barber G.C., Hu M. As-sessment of tribological properties of oil-based flake WS2-oleic acid lubricant on steelbrass sliding contact. Tribology Online. 2020. V. 15(4). P. 293–299. DOI: 10.2474/trol.15.293.

Azam Naderi Safa, Ali Sheibani, Mohammad T. Baei, S. Zahra Sayyed-Alangi, E. Tazikeh Lemeski. Theoretical and experimental studies on sulfasalazine interactions with poly (lactic acid): Impact of hydrogen bonding and charge transfer interactions on molecular structure, electronic and optical properties. Heliyon. 2024. V. 10. N 1. P. e23813. DOI: 10.1016/j.heliyon.2023.e23813.

Mamand D.M., Qadr H.M. Quantum chemical and Monte Carlo simulations on corrosion inhibition efficiency of 2-mercapto-5-phenylfuran and bis(pyridyl)oxadiazoles. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 8. P. 33-45. DOI: 10.6060/ivkkt.20236608.6807.

Fedorov M.S., Filippov A.A., Filippov I.A., Giricheva N.I., Syrbu S.A., Kiselev M.R. Hydrogen bond in potentially mesogenic molecular complexes of 4-(phenylazo)benzoic acid and 4-(phenylazo)phenol with pyridine derivatives. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 12. P. 12-23. DOI: 10.6060/ivkkt.20226512.6665.

Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. V. 98. P. 5648-5652. DOI: 10.1063/1.464913.

Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37. P. 785-789. DOI: 10.1103/PhysRevB.37.785.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision, Gaussian, Inc., Wallingford CT, 2009.

Tsuji H. Poly (lactic acid) stereocomplexes: A decade of progressю Adv. Drug Delivery Rev. V. 2016. 107. P. 97-135. DOI: 10.1016/j.addr.2016.04.017.

Yu K., Ni J., Zhou H., Wang X., Mi J. Effects of insitu crystallization on poly (lactic acid) microcellular foaming: Density functional theory and experiment. Polymer. 2020. V. 200. 122539. DOI: 10.1016/j.polymer.2020.122539.

Marenich, A.V., Cramer, C.J., Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009. V. 113. 6378e6396. DOI: 10.1021/jp810292n.

Karelson M., Lobanov V.S., Katritzky A.R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 1996. V. 96 (3). P. 1027-1044. DOI: 10.1021/cr950202r.

Saghali M., Tazikeh Lemeski E., Fekri Baraghoosh M., Mirzaei H., Khandoozi S.R., Erfani-Moghadam V., Taziki S., Soltani A. Density functional theory and molecular docking studies on electronic and optical features of poly (lactic acid) interacting with celecoxib. Chem. Phys. Impact. 2023. V. 7. 100356. DOI: 10.1016/j.chphi.2023.100356.

Zhang B., Wang H., Tazikeh-Lemeski E., Javan M., Gu J., Soltani A., Guo L. Comparative binding effects of celecoxib/poly(lactic-coglycolic acid) microparticles with enhancing anti-inflammatory and anti-cancer activities: Density functional theory, molecular Docking, and ADMET calculations. J. Molec. Liq. 2023. V. 392. 123332. DOI: 10.1016/j.molliq.2023.123332.

Ryu C., Lee H., Kim H., Hwang S., Hadadian Y., Mohanty A., Park I-K., Cho B., Yoon J., Lee J.Y. Highly Opti-mized Iron Oxide Embedded Poly(Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity. Int. J. Nanomed. 2022. V. 17. P. 31-44. DOI: 10.2147/IJN.S344257.

Hossain M.R., Hasan M.M., Nishat M. DFT and QTAIM investigations of the adsorption of chlormethine anticancer drug on the exterior surface of pristine and transition metal functionalized boron nitride fullerene. J. Molec. Liq. 2021. V. 323. 114627. DOI: 10.1016/j.molliq.2020.114627.

Soltani A., Ghari F., Khalaji A.D., Tazikeh Lemeski E., Fejfarova K., Dusek M., Shikhi M. Crystal structure, spectroscopic and theoretical studies on two Schiff base compounds of 2,6-dichlorobenzylidene-2,4-dichloroaniline and 2,4-dichlorobenzylidene-2,4-dichloroaniline. Spectrochim. Ac-ta Part A. 2015. V. 139. P. 271-278. DOI: 10.1016/j.saa. 2014.10.099.

Dıaz Costanzo G., Ribba L., Goyanes S., Ledesma S. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes. J. Phys. D: Appl. Phys. 2014. V. 47. P. 135103. DOI: 10.1088/0022-3727/47/13/135103.

Gadermann M., Kular S., Al-Marzouqi A.H., Signorell R. Formation of naproxen–polylactic acid nanoparticles from supercritical solutions and their characterization in the aerosol phase. Phys. Chem. Chem. Phys. 2009. V. 11. P. 7861-7868. DOI: 10.1039/b901744e.

Published
2024-05-04
How to Cite
Safa, A. N., Sheibani, A., Baei, M. T., Sayyed-Alangi, S. Z., & Lemeski, E. T. (2024). OLEIC ACID AS AN EFFECTIVE SURFACTANT FOR POLY (LACTIC ACID) MICROPARTICLE: A DFT STUDY. ChemChemTech, 67(6), 65-72. https://doi.org/10.6060/ivkkt.20246706.7069
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)