MOLECULAR STRUCTURE OF MANGANESE TRIS-ACETYLACETONATE IN DIFFERENT SPIN STATES

  • Raphael Johann Friedrich Berger Paris Lodron University of Salzburg
  • Georgiy V. Girichev Ivanovo State University of Chemistry and Technology
  • Angelika A. Petrova Ivanovo State University of Chemistry and Technology
  • Valery V. Sliznev Ivanovo State University of Chemistry and Technology
  • Nataliya V. Tverdova Ivanovo State University of Chemistry and Technology
  • Nina I. Giricheva Ivanovo State University
Keywords: Jahn-Teller effect, vibronic effect, manganese tris-acetylacetonate, spin state

Abstract

Quantum chemical calculations of the geometric structure, force fields and harmonic vibration frequencies of the molecule Mn(acac)3 for electronic states with multiplicities M = 1, 3 and 5 were performed using the GAUSSIAN 09 program in the framework of density functional theory (DFT/UB3LYP) with correlation-consistent valence three-exponential basis functions cc-pVTZ. The structure with high-spin state S=2 (symmetry of electronic state 5B) possesses the lowest energy and it is characterized by C2 symmetry. The coordination polyhedron MnO6 possesses the shape of “elongated octahedron”. The high-spin state 5A is characterized by structure of compressed octahedron. The distortion of octahedral structure of coordination polyhedron in the states 5A and 5B is significant, and this fact testifies to the strong Jahn-Teller effect, or vibronic effect, in 5E electronic state. The calculations for low-spin state S=0 are notable for some specifics. The optimization resulted in C2 symmetry of molecule having the symmetry of electronic state 1B. The bond distances Mn-O within 0.001 Å were equal to values obtained for structure with D3 symmetry with S=1. This result corresponds to the situation if two electrons occupy different 1e orbitals possessing opposite spins. The spin states 3A2 and 1B lie higher than the high-spin state by 5.2 and 17.3 kcal/mol, respectively. The structural features are explained well in a framework of simple crystal field theory indicating that d-orbitals of Mn3+ ion undergo the significant influence of ligand field.


Forcitation:

Berger R.J.F., Girichev G.V., Giricheva N.I., Petrova A.A., Sliznev V.V., Tverdova N.V. Molecular structure of manganese tris-acetylacetonate in different spin states. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 4. P. 47-53.

References

Morosin B., Brathovde R. The crystal structure and molecular configuration of trisacetylacetonatomanganese(III). J. Acta Cryst. 1964. V. 17. P. 705-711. DOI: 10.1107/S0365110X64001761.

Diaz-Acosta I., Baker J., Hinton J.F., Pulay P. Calculated and experimental geometries and infrared spectra of metal tris-acetylacetonates: vibrational spectroscopy as a probe of molecular structure for ionic complexes. Part II. Spectrochim. Acta Part A. 2003. V. 59. P. 363–377. DOI: 10.1016/S1386-1425(02)00166-X.

Geremia S., Demitri N. Crystallographic Study of Manganese(III) Acetylacetonate: An Advanced Undergraduate Project with Unexpected Challenges. J. Chem. Educ. 2005. V. 82. P. 460–465. DOI: 10.1021/ed082p460.

Freitag R., Conradie J. Understanding the Jahn–Teller Effect in Octahedral Transition-Metal Complexes: A Molecular Orbital View of the Mn(β-diketonato)3 Complex. J. Chem. Educ. 2013. V. 90. N 12. P. 1692–1696. DOI: 10.1021/ed400370p.

Freitag R., Muller T.J., Conradie J. X-Ray Diffraction and DFT Calculation Elucidation of the Jahn–Teller Effect Observed in Mn(dibenzoylmethanato)3. J. Chem. Crystallogr. 2014. V. 44. P. 352–359. DOI: 10.1007/s10870-014-0522-6.

Stults R.B., Marianelli R.S., Day V.W. Distortions of the coordination polyhedron in high-spin manganese(III) complexes. 3. Crystal and molecular structure of gamma.-tris(acetylacetonato)manganese(III): a tetragonally elongated octahedral form. Inorg. Chem. 1979. V. 18. P. 1853–1858. DOI: 10.1021/ic50197a028.

Zaitseva E.G., Baidina I.A., Stabnikov P.A., Borisov S.V., Igumenov I.K. Crystal and molecular structure of tris (dibenzo-ylmethanate) manganese (III). Russ. J. Struct. Chem. 1990. V. 31. P. 184-189.

Barra A.L., Gatteschi D., Sessoli R., Abbati G.L., Cornia A., Fabretti A.C., Uytterhoeven M.G. Electronic Structure of Manganese(III) Compounds from High-Frequency EPR Spectra. Angew. Chem. Int. Ed. 1997. V. 36. P. 2329-2331. DOI: 10.1002/anie.199723291.

Fackler J.P., Avdeef A. Crystal and molecular structure of tris(tropolonato)manganese(III), Mn(O2C7H5)3, a high-spin complex having structural features consistent with Jahn-Teller behavior for two distinct MnO6 centers. Inorg. Chem. 1974. V. 13. P. 1864–1875. DOI: 10.1021/ic50138a016.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Och-terski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Sal-vador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09. Wallingford CT: Gaussian, Inc. 2009.

Becke A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. V. 98. N 7. P. 5648-5652. DOI: 10.1063/1.464913.

Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988.

V. 38. N 6. P. 3098-3010. DOI: 10.1103/PhysRevA.38.3098.

Lee C., Yang W., Parr R.G. Development of the Colic-Salvetti correlation-energy formula into a functional of the electron densi-ty. Phys. Rev. B. 1988. V. 37. N 2. P. 785-789. DOI: 10.1103/PhysRevB.37.785.

Dunning T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1971. V. 55. P. 716-723. DOI: 10.1063/1.1676139.

Balabanov N.B., Peterson K.A. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J. Chem. Phys. 2005. V. 123. P. 064107-1 – 064197-15.

Chemcraft program, Version 1.8 http://www.chemcraftprog.com.

Published
2017-05-12
How to Cite
Berger, R. J. F., Girichev, G. V., Petrova, A. A., Sliznev, V. V., Tverdova, N. V., & Giricheva, N. I. (2017). MOLECULAR STRUCTURE OF MANGANESE TRIS-ACETYLACETONATE IN DIFFERENT SPIN STATES. ChemChemTech, 60(4), 47-53. https://doi.org/10.6060/tcct.2017604.5555
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)