IMPACT OF TRANSFER PROCESSES OF LIQIUD CATHODE COMPONENTS ON PHYSICAL-CHEMICAL PARAMETERS OF ATMOSPHERIC PRESSURE DC DISCHARGE

  • Anton L. Kulentsan Ivanovo State University of Chemistry and Technology
  • Dmitriy A. Shutov Ivanovo State University of Chemistry and Technology
  • Vladimir V. Rybkin Ivanovo State University of Chemistry and Technology
Keywords: air plasma, electrolyte cathode, electron energy function distributions, electron kinetic parameters

Abstract

Experimental data on glow discharge parameters of atmospheric pressure in air with cathodes from distilled water and water containing ions of potassium, sodium and copper (II) are obtained. Chlorides of the corresponding salts were used. The current range was 20-60 mA, and the solution concentrations were -0.1-0.4 mol/l. The cathode drops of the potential and the electric fields in the plasma are determined by the mobile anode method. With emission spectroscopy by modeling the unresolved rotational structure of the emission bands of the second positive system of nitrogen molecules, gas temperatures were found. On the basis of these data, the total concentrations of the particles, the reduced electric field strengths, were found. It is found that the increase in the discharge current leads to a decrease in the cathode drops of the potential, the strengths of the electric fields, and the reduced field strengths. At the same time, the temperature of the gas was practically independent on the discharge current and it was 1600 ± 150 K. By numerical solution of the Boltzmann equation for electrons, electron energy distribution functions, mean energies and electron concentrations and rate constants of the processes occurring under the action of electron impact were determined. An estimate is made of the contribution to the formation of charged particles in the plasma of ionization processes of metal atoms that appear in the gas phase as a result of non-equilibrium transfer from the liquid cathode. It is shown that for molar fractions of metal atoms of 10-4 and higher, ionization is completely determined by collisions of electrons with metal atoms, rather than with molecules of the main plasma-forming gas. It is also shown that discharges with cathodes containing salt solutions have smaller values of cathode potential drops.

Forcitation:

Kuletsan A.L., Shutov D.A., Rybkin V.V. Impact of transfer processes of liqiud cathode components on physical-chemical parameters of atmospheric pressure dc discharge. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 6. P. 52-58.

References

Bruggeman P., Leys C. Non-thermal plasmas in and in contact with liquids. J. Phys. D: Appl. Phys. 2009. V. 42. N 5.

P. 053001. DOI: 10.1088/0022-3727/42/5/053001.

Tatarova E., Bundaleska N., Sarrette L.Ph., Ferreira C.M. Plasmas for environmental issues: from hydrogen production to 2D materials assembly. Plasma Sources Sci. Technol. 2014. V. 23 N 6. P. 063002. DOI: 10.1088/0963-0252/23/6/063002.

Jiang B., Zheng J., Qiu S., Wu M., Zhang Q., Yan Z., Xue Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Ing. J. 2014. V. 236. P. 348. DOI: org/10.1016/j.cej.2013.09.090.

Joshi R.P., Mededovic Thagard S.M. Streamer-Like Electrical Discharges in Water: Part II. Environmental Applications. Plasma Chem. Plasma Process. 2013. V. 33. N 1. P. 17. DOI: 10.1007/s11090-012-9425-5.

Bobkova E.S., Grinevich V.I., Isakina A.A., Rybkin V.V. Decomposition of organic compounds under action of atmospheric pressure electric discharges. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2011. V. 54. N 6. P. 3 (in Russian).

Fridman A. Plasma Chemistry. Cambrige University Press. 2008. 978 p.

Mezei P., Cserfalvi T., Kim H.J., Mohammad A., Mottaleb M.A. The influence of chlorine on the intensity of metal atomic lines emitted by an electrolyte cathode atmospheric glow discharge. Analyst. 2001. V. 126. N 5. P. 712. DOI: 10.1039/B010057I.

Choi H.S., Rybkin V.V., Titov V.A., Shikova T.G., Ageeva T.A. Comparative action of a low pressure oxygen plasma and an atmospheric pressure glow discharge on the surface modification of polypropylene Surf. Coat. Technol. 2006. V. 200. N 14-15. P. 4479. DOI: 10.1016/j.surfcoat.

Titov V.A., Rybkin V.V., Shikova T.G., Ageeva T.A., Golubchikov O.A., Choi H.S. Study on the application possibilities of an atmospheric pressure glow discharge with liquid electrolyte cathode for the modification of polymer materials Surf. Coat. Tech-nol. 2005. V. 199. N 2-3. P. 231. DOI: 10.1016/j.surfcoat.2005.01.037.

Lin L., Wang Q. Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis. Plasma Chem. Plasma Process. 2015. V. 35. N 6. P. 925. DOI: 10.1007/s11090-015-9640-y.

Misra N.N. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends Food Sci. Technol. 2015. V. 45. N 2. P. 229. DOI: 10.1016/j.tifs.2015.06.005.

Mu R., Liu Y., Li R., Xue G., Ognier S. Remediation of pyrene-contaminated soil by active species generated from flat-plate dielectric barrier discharge. Chem. Ing. J. 2016. V. 296. P. 356. DOI: 10.1016/j.cej.2016.03.106.

Maksimov A.I., Titov V.A., Khlyustova A.V. Electrolyte-as-Cathode Glow Discharge Emission and the Processes of Solution-to-Plasma Transport of Neutral and Charged Species. High Energy Chemistry. 2004. V. 38. N 3. P. 196. DOI: 10.1023/B:HIEC.0000027659.13545.fb.

Titov V.A., Rybkin V.V., Smirnov S.A., Kulentsan A.N., Choi H.S. Experimental and theoretical studies on the characteristics of atmospheric pressure glow discharge with liquid cathode. Plasma Chem. Plasma Process. 2006. V. 26. N 6. P. 543. DOI: 10.1007/s11090-006-9014-6.

Bruggeman P., Schram D., Gonzalez M.A., Rego R., Kong M.G., Leys C. Characterization of a direct dc-excited discharge in water by optical emission spectroscopy. Plasma Sources Sci. Technol. 2009. V. 18. N 2. P. 025017. DOI: 10.1088/0963-0252/18/2/025017.

Konovalov A.S., Rybkin V.V., Smirnov S.A. Parameters of electron in non-equilibrium air plasma. Характеристики электро-нов в неравновесной плазме воздуха. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2013. V. 56. N 11. P. 44 (in Russian).

Bobkova E.S., Rybkin V.V. Estimation of electron parameters in the dielectric barrier discharge with a liquid electrode at atmos-pheric pressure. High Temperature. 2013. V. 51. N 6. P. 747. DOI: 10.1134/S0018151X13060059.

Shutov D.A., Smirnov S.A., Konovalov A.S., Ivanov A.N. Modeling of the Chemical Composition of DC Atmospheric Pres-sure Air Discharge Plasma in Contact with Aqueous Solutions of Sodium Dodecylbenzenesulfonate. High Temperature. 2016. V. 54. N 4. P. 483. DOI: 10.1134/S0018151X16040210.

Titov V.A., Rybkin V.V., Maximov A.I., Choi H.-S. Characteristics of Atmospheric Pressure Air Glow Discharge with Aque-ous Electrolyte Cathode. Plasma Chem. Plasma Process. 2005. V. 25. N 5. P. 503. DOI: 10.1007/s11090-005-4996-z.

Smirnov S., Shutov D., Bobkova E., Rybkin V. Physical Parameters and Chemical Composition of a Nitrogen DC Discharge with Water Cathode. Plasma Chem. Plasma Process. 2015. V. 35. N 4. P. 639. DOI: 10.1007/s11090-015-9626-9.

Bobkova Е.S., Shikova Т.G., Grinevich V.I., Rybkin V.V. Mechanism of hydrogen peroxide formation in electrolytic-cathode atmospheric-pressure direct-current discharge. High Energy Chemistry. 2012. V. 46. N 1. P. 56. DOI: 10.1134/S0018143912010079.

Bobkova E.S., Krasnov D.S., Sungurova A.V., Rybkin V.V., Choi H.-S. Phenol decomposition in water cathode of DC at-mospheric pressure discharge in air. Korean J. Chem. Eng. 2016. V. 33. N 5. P. 1620. DOI: 10.1007/s11814-015-0292-7.

Janca J., Kuzmin S., Maximov A., Titova J. Investigation of the chemical action and “point” arcs between the metallic electrode and aqueous solution. Plasma Сhem. Plasma Process. 1999. V. 19. N 1. Р. 53. DOI: 10.1023/A:1021803932496.

Petrash G.G., Rybkin V.V. Effect of HBr additives on the breakdown characteristics of a Ne-H2-Cu laser mixture. Laser Phys-ics. 2005. V. 15. N 8. P. 1142.

Rez P. Accurate Cross Sections for Microanalysis. J. Res. Natl. Inst. Stand. Technol. 2002. V.107. N 6. P. 487–495.

Rybkin V.V., Titov V.A., Kholodkov I.V. Kinetic parameters and cross-sections of electron interaction with water molecules. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2008. V. 51. N 3. P. 3 (in Russian).

Published
2017-07-19
How to Cite
Kulentsan, A. L., Shutov, D. A., & Rybkin, V. V. (2017). IMPACT OF TRANSFER PROCESSES OF LIQIUD CATHODE COMPONENTS ON PHYSICAL-CHEMICAL PARAMETERS OF ATMOSPHERIC PRESSURE DC DISCHARGE. ChemChemTech, 60(6), 52-58. https://doi.org/10.6060/tcct.2017606.5566
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)