Al30-PILLARED MONTMORILLONITE WITH ENHANCED TEXTURAL PROPERTIES DUE TO PRELIMINARY MECHANICAL TREATMENT
Abstract
The effect of mechanical treatment of natural montmorillonite in a planetary-centrifugal mill on the efficiency of intercalating aluminum polyhydroxocomplexes [Al30O8(OH)56(H2O)26]18+ in the formation of pillared structures was studied. Measurements made using the photometry method showed that in the montmorillonite matrix, after intercalation of the Al30 polyhydroxocomplexes using mechanical treatment, an increase in the content of Al3+ cations by 13% was observed. According to the electrophoretic light scattering data, the particle size for the suspension of mechanically activated montmorillonite dispersed in water was about 100 nm. The raw, mechanically activated and pillared montmorillonites are characterized by the methods of low-angle X-ray diffraction, scanning electron microscopy, and low-temperature nitrogen adsorption-desorption. It was shown that preliminary mechanical activation of the initial substrate increases the basal distance d001 and significantly (approximately by 45–50%) increases the specific surface area and the total pore volume of Al30-pillared montmorillonite; in this case, both meso- and microporosity increase, and the pore size decreases by about 12%. The special importance of the size of montmorillonite particles during the intercalation and further formation of the pillared structure is shown. А decrease in the size of the montmorillonite particles during mechanical treatment increasing the area of the interphase boundary through which ion exchange takes place. It was shown that the small sizes of tactoids (about 100 nm) in an aqueous suspension play a key role in increasing the cation exchange capacity of mechanically activated montmorillonite. To a lesser extent, the efficiency of intercalation is influenced by the processes of defect formation and the related changes in the electrical properties of the silicate layers of montmorillonite. Based on the structural properties, the obtained pillared materials can be recommended for use as selective adsorbents, molecular sieves and catalysts.
References
Fernandes F.M., Baradari H., Sanchez C. Integrative strategies to hybrid lamellar compounds: an integration challenge. Appl. Clay Sci. 2014. V. 100. P. 2-21. DOI: 10.1016/j.clay.2014.05.013.
Bergaya F., Theng B. K. G., Lagaly G. Handbook of Clay Science. 1st Edition (Developments in Clay Science). Amsterdam: Elsevier Ltd. 2006. V. 1. P. 393.
Ye W., Zhao B., Gao H., Huang J., Zhang X. Preparation of highly efficient and stable Fe, Zn, Al-pillared montmorillonite as heterogeneous catalyst for catalytic wet peroxide oxidation of Orange II. J. Porous Mater. 2016. V. 23. P. 301-310. DOI: 10.1007/s10934-015-0082-y.
Bergaya F., Lagaly G. Handbook of Clay Science. 2nd Edi-tion (Developments in Clay Science). Amsterdam: Elsevier Ltd. 2013. V. 5. P. 524.
Gil A., Korili S.A., Vicente M.A. Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Cat. Rev.-Sci. Eng. 2008. V. 50. P. 153-221. DOI: 10.1080/01614940802019383.
Wang Y., Zhang P., Wen K., Su X., Zhu J., He H. A new insight into the compositional and structural control of porous clay heterostructures from the perspective of NMR and TEM. Micropor. Mesopor. Mater. 2016. V. 224. P. 285-293. DOI: 10.1016/j.micromeso.2015.12.053.
Chávez-García M. L., de Pablo-Galán L., Saucedo-Ramírez M.P. Synthesis of intercalated Al-hydroxy-montmorillonite. J. Mex. Chem. Soc. 2006. V. 50. N 1. P. 36-41.
Butman M. F., Ovchinnikov N. L., Arbuznikov V. V., Agafonov A. V., Nuralyev B. Synthesis of Al2O3-pillared montmorillonite by intercalation of «giant» aluminum polycations. Pisma Mater. 2013. V. 3. P. 284-287 (in Russian). Бутман М.Ф., Овчинников Н.Л., Арбузников В.В., Агафонов А.В., Нуралыев Б. Синтез Al2O3-пилларированного монтмориллонита интеркаляцией "гигантских" поликатионов алюминия. Письма о материа-лах. 2013. Т. 3. № 4. С. 284-287.
Butman M.F., Belozerov A.G., Karasev N.S., Kochkina N.E., Khodov I.A., Ovchinnikov N.L. Structural and textural properties of pillared montmorillonite at intercalation of large Al- and Al/Ce-polyhydroxocomplexes. Nanotechnol. in Russia. 2015. V. 10. N 9-10. P. 706-712 (in Russian). DOI: 10.1134/S1995078015050031.
Бутман М.Ф., Белозеров А.Г., Карасев Н.С., Кочкина Н.Е., Ходов И.А., Овчинников Н.Л. Структурные и текстурные свойства пилларного монтмориллонита при интеркаляции крупноразмерных Al- и Al/Ce-полигидроксо-комплексов. Росс. нанотехнол. 2015. Т. 10. № 9.
С. 29 – 34.
Zhu J., Wen K., Zhang P, Wang Y., Ma L, Xi Y., Zhu R., Liu H., He H. Keggin-Al30 pillared montmorillonite. Mi-cropor. Mesopor. Mater. 2017. V. 242. P. 256-263. DOI: 10.1016/j.micromeso.2017.01.039.
Zhu J., Wen K., Wang Y., Ma L., Su X., Zhu R., Xid Y., He H. Superior thermal stability of Keggin-Al30 pillared montmorillonite: A comparative study with Keggin-Al13 pillared montmorillonite. Micropor. Mesopor. Mater. 2018. V. 265. P. 104–111. DOI: 10.1016/j.micromeso.2018.02.007.
Yapar S., Torres Sanchez R. M., Emreol M., Weidler P., Emmerich K. Microwave irradiation used for all steps of prepillaring Al-mintmorillonite. Clay Minerals. 2009. V. 44. N 2. P. 267-278. DOI: 10.1180/claymin.2009.044.2.267.
Katdare S.P., Ramaswamy V., Ramaswamy A.V. Preparation of alumina pillared montmorillonite clays employing ultrasonics and their catalytic properties. Micropor. Mesopor. Mater. 2000. V. 2. N 1. P. 53-58. DOI: 10.18321/ectj357.
Al-Qunaibit М.M., Al Juhaiman L. Mechanical modification of Khulays clay; structural and textural effects. Int. J. Basic Applied Sciences. 2012. V. 12. N 6. P. 205-209.
Ovchinnikov N.L., Arbuznikov V.V., Kapinos A.P., Belozerov A.G., Butman M.F. Effect of mechanical activa-tion of montmorillonite on the intercalation efficiency of polyhydroxyaluminum cations in the formation of pillar structure. Nanotechnol. in Russia. 2015. V. 10. N 3-4. P. 254-260 (in Russian). DOI: 10.1134/S1995078015020159. Овчинников Н.Л., Арбузников А.В., Капинос А.П., Белозеров А.Г., Бутман М.Ф. Влияние механоактивации монтмориллонита на эффективность интеркаляции полигидрок-сокомплексов алюминия при формировании слоисто-столбчатой структуры. Росс. нанотехнол. 2015. Т. 10. №. 3. С. 64 – 69.
Nasedkin V.V. Dash-Salakhli bentonite deposit (formation and prospects of development). М: GEOS. 2008. 85 p. (in Russia). Наседкин В.В. Даш-Салахлинское месторождение бентонита (становление и перспективы развития). М.: ГЕОС. 2008. С. 85.
Guerra L.D., Airoldi C., Lemos V.P., Angelica R.S. Adsorptive, thermodynamic and kinetic performance of Al/Ti and Al/Zr-pillared clays from the Brazilian Amazon region for zinc cation removal. J. Hazard. Mater. 2008. V. 155. N 1-2. P. 230-242. DOI: 10.1016/j.jhazmat.2007.11.054.
Zuo S., Zhou R. Influence of synthesis condition on pore structure of Al pillared clays and supported Pd catalysts for deep oxidation of benzene. Micropor. Mesopor. Mater. 2008. V. 113. P. 472-480. DOI: 10.1016/j.micromeso.2007.12.005.
Xia M., Jiang Y., Zhao L., Li F., Xue B., Sun M., Liu D., Zhang X. Wet grinding of montmorillonite and its effect on the properties of mesoporous montmorillonite. Colloids Surf. 2010. V. 356. P. 1-9. DOI: 10.1016/j.colsurfa.2009.12.014.
Sing K.S.W., Everett D.H., Haul R.A.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1984. V. 57. N 4. P. 603-619. DOI: 10.1351/pac198557040603.