ELECTRIC CONDUCTIVITY OF Li+ -DOPED PILLARED MONTMORILLONITE

  • Mikhail F. Butman Ivanovo State University of Chemistry and Technology
  • Nikolay L. Ovchinnikov Ivanovo State University of Chemistry and Technology
  • Nikita S. Karasev Ivanovo State University of Chemistry and Technology
Keywords: pillared montmorillonite, lithium conductivity, solid electrolyte, impedance spectroscopy

Abstract

The method for obtaining solid electrolytes based on layered alumosilicates with lithium conductivity (2D-pillared nanomaterials) was proposed. The procedure of synthesis involves three basic steps: (I) the expansion of the interlayer space by the intercalation of large-size metal polyhydroxocomplexes, (II) the formation by calcination of the pillared matrix with developed pore volume and high specific surface area, and (III) the doping of nanocavities of the pillared structure by the lithium ions. It was shown that for the studied Li+ -doped pillared montmorillonite samples (PMM), intercalated by the polycations [Al13O4(OH)24(H2O)12]7+ and [Al30O8(OH)56(H2O)24]18+, the conductivity was several orders of magnitude higher than that of natural montmorillonite (MM) and is comparable with the most prominent lithium solid electrolytes, starting from temperatures above 100 °C. The magnitude σ100°C (S·сm-1) increases in the series: MM (2.33·10-7), MM-Li+ (2.99·10-6), Al13-PMM-Li+ (1.64·10-5), Al30-PMM-Li+ (3.12·10-5). An ensemble of the pillars in the interlayer space provides an accelerated diffusion of lithium ions over their surface and thus enhances electrical conductivity. For the Al13-PMM-Li+ and Al30-PMM-Li+ samples at a temperature range of about 370-420 °C thermal anomalies of conductivity were observed in contrast to the unmodified montmorillonite. According to the authors, their nature is related to the chemical and structural transformations of the pillars and the accompanying reactions with lithium ions. From this example it follows that the method of the impedance spectroscopy may provide interesting additional information on the nature of chemical transformations of the polycations through an intermediate boehmite-like modification to the form of γ-Al2O3-pillars.

Forcitation:

Butman M.F., Ovchinnikov N.L., Karasev N.S. Electric conductivity of Li+ -doped pillared montmorillonite. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 9. P. 82-91

References

Fernandes F.M., Baradari H., Sanchez C. Integrative strategies to hybrid lamellar compounds: an integration challenge. Appl. Clay Sci. 2014. V. 100. P. 2-21. DOI: 10.1016/ j.clay.2014.05.013.

Brigatti M.F., Galan E., Theng B.K.G. Structure and Mineralogy of Clay Minerals. In: Handbook of Clay Science. Elsevier. 2013. V. 5. P. 21-81. DOI: 10.1016/B978-0-08-098258-8.00002-X.

Bergaya F., Aouad A., Mandalia T. Pillared Clay and Clay Minerals. In: Handbook of Clay Science. Elsevier. 2006. V. 1. P. 393-421. DOI: 10.1016/S1572-4352(05)01012-3.

Gil A., Korili S.A., Vicente M.A. Recent Advances in the Control and Characterization of the Porous Structure of Pillared Clay Catalysts. Catalysis Reviews: Science and Engineering. 2008. V. 50. N. 2. P. 153-221. DOI: 10.1080/ 01614940802019383.

Timofeeva M.N., Khankhasaeva S.Ts. Regulating the Physicochemical and Catalytic Properties of Layered Aluminosilicates. Kinetics and Catalysis. 2009. V. 50. N 1. P. 57-64. DOI: 10.1134/S002315840901008X.

Butman M.F., Ovchinnikov N.L., Arbuznikov V.V., Agafonov A.V. Synthesis and properties of Al-pillared montmorillonite of natural origin. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2012. V. 55. N 8. P. 73-77 (in Russian).

Allouche L., Gerardin C., Loiseau T., Ferey G., Taulelle F. Al30: A Giant Aluminum Polycation. Angew. Chem. Int. Ed. 2000. V. 39. N 3. P. 511-514. DOI: 10.1002/(SICI)15213773 (20000204)39:3<511::AID-ANIE511>3.0.CO;2-N.

Butman M.F., Ovchinnikov N.L., Arbuznikov V.V., Aga-fonov A.V., Nuralyev B. Synthesis of Al2O3-pillared montmorillo-nite by intercalation of “giant” aluminum polycations. Pisma o Materialakh. 2013. V. 3. N 4. P. 284-287 (2013) (in Russian). DOI: 10.22226/2410-3535-2013-4-284-287.

Butman M.F., Ovchinnikov N.L., Nuralyev B., Karasev N.S., Belozerov A.G. Electrolytic Properties of Na+-Doped Pillared Montmorillonite. Nanotechnologies in Russia. 2015. V. 10. N 11. P. 872-877. DOI: 10.1134/S1995078015060026.

Haouzi A., Kharroubi M., Belarbi H., Devautour-Vinot S., Henn F., Giuntini J.C. Activation energe for dc conductivity in dehydrated alkali metal-exchanged montmorillonites: experimental results and model. Appl. Clay Sci. 2004. V. 27. N 1. P. 67-74. DOI: 10.1016/j.clay.2003.12.024.

Zhu H.Y., Ma Q., Lu G.Q. Infliience of Heat Treatments on the Pore and Adsorption Characteristics of Sodium Dope

d Alumina Pillared Bentonite. J. Porous Mater. 1999. V. 6. N 2. P. 135-142. DOI: 10.1023/A:1009683422478.

Ivanov-Shits K.I., Murin I.V. Solid State Ionics. SPb. Gos. Univ., St.-Petersburg. 2010. 1000 p. (in Russian).

Uvarov N.F., Ulikhin A.S., Iskakova A.A., Medvedev N.N., Anikeenko A.V. Ionic Conductivity in Orientationally Disor-dered Phases. Russian Journal of Electrochemistry. 2011. V. 47. N 4. P. 404-409. DOI: 10.1134/S1023193511040197.

Lu X., Xia G., Lemmon John P., Yang Z. Advanced materials for sodium-beta alumina batteries: Status, challenges and per-spectives. J. Power Sources. 2010. V. 195. N 9. P. 2431-2442. DOI: 10.1016/j.jpowsour.2009.11.120.

Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Ha S., Kawa-moto K., Mitsui A. A lithium superionic conductor. Nat. Mater. 2011. V. 10. P. 682-686. DOI: 10.1038/nmat3066.

Goodenough J.B., Kim Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010. V. 22. N 3. P. 587-603. DOI: 10.1021/cm901452z.

Prokhorov I.Yu., Akimov G.Ya., Radionova O.I. Solid Cation Electrolytes and Methanol Energetics. Sci. Innovation. 2011. V. 7. N 6. P. 17-32. DOI: 10.15407/scin7.06.017.

Cao C., Li Z.-B., Wang X.-L., Zhao X.-B., Han W.-Q. Recent advances in inorganic solid electrolytes for lithium batteries. Front. Energy Res. 2014. V. 2. P. 1-10. DOI: 10.3389/fenrg.2014.00025.

Nasedkin V.V. Dash-Salakhli Bentonite Deposition (Development and Trends). GEOS, Moscow. 2010. 85 p. (in Russian).

Guerra L.D., Airoldi C., Lemos V.P., Angelica R.S. Adsorptive, thermodynamic and kinetic performances of Al/Ti and Al/Zr-pellared clays from the Brazilian Amazon region for zinc cation removal. J.Hazardous Materials. 2008. V. 155. N 1. P. 230-242. DOI: 10.1016/j.jhazmat.2007.11.054.

Jonscher A.K. Analysis of the alternating current properties of ionic conductors. J. Mater. Sci. 1978. V. 13. N 3. P. 553-562. DOI: 10.1007/BF00541805.

Sheffield S.H., Howe A.T. High proton conductivity in pressed pellets of H-montmorillonite, H-Al-montmorillonite and H-Al-Fe-montmorillonite clay. Mat. Res. Bull. 1979. V. 14. N 7. P. 929-935. DOI: 10.1016/0025-5408(79)90159-4.

Sredić S., Cajkovski T., Davidovic M., Cajkovski D., Likar-Smiljanic V., Marinovic-Cincovic M., Mioc U.B., Zoran Nedic, Biljic R. Physicochemical Properties of Al-Pillared Montmorillonite Doped with 12-Tungstophosphoric Acid. Mater. Sci. Forum. 2004. V. 453. P. 157-162. DOI: 10.4028/www.scientific.net/MSF.453-454.157.

Ruiz-Hitzky E., Galvan J.C., Merino J., Casal B., Aranda P., Jimenez-Morales A. Proton conductivity in Al-montmorillonite pillared clay. Solid State Ionics. 1996. V. 85. N 1. P. 313-317. DOI: 10.1016/0167-2738(96)00075-6.

Whittingham M.S. Transport properties of the mineral vermiculite. Solid State Ionics. 1989. V. 32. P. 344-349. DOI: 10.1016/0167-2738(89)90239-7.

Masar J., Kuchta L., Gerthofferova H., Fajnor V.S. Thermal research of montmorillonite synthetized from the oxides SiO2-Al2O3-MgO-CaO. J. Therm. Anal. 1982. V. 24. N 1. P. 43-50. DOI: 10.1007/BF01914798.

Guindy N.M., El-Akkad T.M., Flex N.S., El-Massry S.R., Nashed S. Thermal dehydration of mono- and di-valent montmoril-lonite cationic derivaties. Thermochim. Acta. 1985. V. 88. N 2. P. 369-378. DOI: 10.1016/0040-6031(85)85457-5.

Ogloza A.A., Malhotra V.M. Dehydroxylation Induced Structural Transformations in Montmorillonite: an Isothermal FTIR Study. Phys. Chem. Miner. 1989. V. 16. N 4. P. 378-385. DOI: 10.1007/BF00199559.

Ohtsuka K. Preparation and Properties of Two-Dimensional Microporous Pillared Interlayered Solids. Chem. Mater. 1997. V. 9. N 10. P. 2039-2050. DOI: 10.1021/cm9605227.

Al’myasheva O.V., Korytkova E.N., Maslova A.V., Gusa-rov V.V. Preparation of Nanocrystalline Alumina under Hydro-thermal Conditions. Inorganic Materials. 2005. V. 41. N 5. P. 460-467. DOI: 10.1007/s10789-005-0152-7.

Knauth P. Inorganic solid Li ion conductors: An overview. Solid State Ionics. 2009. V. 180. N 14. P. 911-916. DOI: 10.1016/j.ssi.2009.03.022.

Telnova G.B., Solntseva K.A. Structure and Ionic Conductivity of Beta-Alumina-Based Solid Electrolyte Prepared from Sodium Polyaluminate Nanopowders. Inorg. Mater. 2015. V. 51. N 3. P. 257. DOI: 10.1134/S0020168515030176.

Published
2017-10-23
How to Cite
Butman, M. F., Ovchinnikov, N. L., & Karasev, N. S. (2017). ELECTRIC CONDUCTIVITY OF Li+ -DOPED PILLARED MONTMORILLONITE. ChemChemTech, 60(9), 82-91. https://doi.org/10.6060/tcct.2017609.5591
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)