INFLUENCE OF MICROWAVE IRRADIATION POWER ON THE PRODUCTION OF FLUORAPATITE FROM WASTE EGGSHELLS BY CHEMICAL CO-PRECIPITATION

  • Ganka R. Kolchakova Assen Zlatarov University
  • Dimitrina S. Kiryakova Assen Zlatarov University
Keywords: microwave irradiation power, waste eggshells, fluorapatite, monetite, chemical co-precipitation

Abstract

This study investigated the effect of microwave irradiation power on the synthesis of fluorapatite (FAp) from waste eggshells using a chemical coprecipitation method. The precursor mixture was subjected to microwave treatment at power levels of 600 and 800 W. X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Scanning electron microscopy (SEM) analysis techniques were utilized to evaluate the characteristics of synthesized powders. The results showed that at 600 W a two-phase material is obtained, containing a main phase monetite and a secondary phase fluorapatite, while at 800 W the production of pure fluorapatite is observed.

For citation:

Kolchakova G.R., Kiryakova D.S. Influence of microwave Irradiation power on the production of fluorapatite from waste eggshells by chemical co-precipitation. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2025. V. 68. N 10. P. 81-86. DOI: 10.6060/ivkkt.20256810.7231.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References

Khofiyatuzziyadah A., Charlena C., Maddu A. // Mat. Int. 2024. V. 6. P. 32. DOI: 10.33263/Materials64.032.

Seyedmajidi S., Seyedmajidi M. // Iran. J. Mater. Sci. Eng. 2022. V. 19. P. 1-20. DOI: 10.22068/ijmse.2430.

Charlena C., Sari Y., Islamia W. // Indones. J. Pure Appl. Chem. 2023. V. 6. P. 152. DOI: 10.26418/indonesian.v6i3.67697.

Graziani G., Ghezzi D., Nudelman F., Sassoni E., Laidlaw F., Cappelletti M., Borchiani G., Milita S., Bianchi M., Baldini N., Falini G. // J. Mater. Chem. B. 2024. V. 12. P. 2083–2098. DOI: 10.1039/d3tb02454g.

Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y. // Biomat. Res. 2019. V. 23. P. 4. DOI: 10.1186/s40824-018-0149-3.

Essamlali Y., Amadine O., Fihri A., Zahouily M. // Renew. Energy. 2019. V. 133. P. 1295–1307. DOI: 10.1016/ j.renene.2018.08.103.

Vishwakarma R., Mannepalli L.K., Rathod V. // Chem. Eng. Res. Des. 2022. V. 181. 101–109. DOI: 10.1016/ j.cherd.2022.03.001.

Xia Y., Huang X., Li W., Zhang Y., Li Z. // J. Hazard. Mater. 2019. V. 361. P. 321–328. DOI: 10.1016/j.jhazmat.2018.09.007.

Ma L., Huang Y., Zhao K., Deng H., Tian Q., Yan M. // J. Environ. Chem. Eng. 2021. V. 9. P. 106600. DOI: 10.1016/ j.jece.2021.106600.

Ramteke L., Sahayam A., Ghosh A., Rambabu U., Reddy M., Popat K., Rebary B., Kubavat D., Marathe K., Ghosh P. // J. Fluor. Chem. 2018. V. 210. P. 149–155. DOI: 10.1016/j.jfluchem.2018.03.018.

Erlangga M., Charlena C., Suparto I. // J. Kim. Sains Apl. 2024. V. 27. P. 174-181. DOI: 10.14710/jksa.27.4.174-181.

Baláž M., Boldyreva E.V., Rybin D., Pavlović S., Rodríguez-Padrón D., Mudrinić T., Luque R. // Front. Bioeng. Biotechnol. 2021. V. 8. P. 612567. DOI: 10.3389/fbioe.2020.612567.

Pagonis N., Flegkas D., Itziou A., Kountouras K., Stimoniaris A., Samaras P., Karayannis V. // Eng. 2024. V. 5. P. 3540–3550. DOI: 10.3390/eng5040184.

Torres G.M.E., Milhans C., Gezek M., Camci‐Unal G. // Adv. NanoBiomed Res. 2024. P. 2400120. DOI: 10.1002/anbr.202400120.

Nuzulia N., Bachtiar, E., Alisyah D., Sari Y. // AIP Conf. Proc. 2024. 3210. P. 020005. DOI: 10.1063/5.0227909.

Nuzulia N., Siregar F., Sari Y. // AIP Conf. Proc. 2021. 2346. P. 020008. DOI: 10.1063/5.0048192.

Taheri M., Shirdar M., Keyvanfar A., Shafaghat A. // J. Exp. Nanosci. 2016. V. 12. P. 83–93. DOI: 10.1080/ 17458080.2016.1263400.

Bulina N., Makarova S., Prosanov I., Vinokurova O., Lyakhov N. // J. Solid State Chem. 2020. V. 282. P. 121076. DOI: 10.1016/j.jssc.2019.121076.

Fereshteh Z., Fathi M., Mozaffarinia R. // J. Clust. Sci. 2015. V. 26. P. 1041–1053. DOI: 10.1007/s10876-014-0793-2.

Tiskute M., Eisinas A., Baltakys K. // J. Therm. Anal. Calorim. 2025. V. 150. P. 977-989. DOI: 10.1007/s10973-024-13543-4.

Hassan M., Mahmoud M., El-Fattah A., Kandil S. // Ceram. Int. 2016. V. 42. P. 3725–3744. DOI: 10.1016/j.ceramint.2015.11.044.

Nabiyouni M., Zhou H., Luchini T., Bhaduri S. // Mater. Sci. Eng. C. 2014. V. 37. P. 363-368. DOI: 10.1016/j.msec. 2014.01.018.

Asra D., Sari Y., Dahlan K. // IOP Conf. Ser. Earth Environ. Sci. 2018. V. 187. P. 012016. DOI: 10.1088/1755-1315/187/1/ 012016.

Teptereva G.A., Chetvertneva I.A., Movsumzade E.M., Sevastyanova M.V., Baulin O.A., Loginova M.E., Pakhomov S.I., Karimov E.H., Egorov M.P., Nifantyev N.E., Evstigneev E.I., Vasiliev A.V., Voloshin A.I., Nosov V.V., Dokichev V.A., Fakhreeva A.V., Babaev E.R., Rogovina S.Z., Berlin A.A., Kolchina G.Y., Voronov M.S., Staroverov D.V., Kozlovsky I.A., Kozlovsky R.A., Tarasova N.P., Zanin A.A., Krivoborodov E.G., Kari-mov O.K., Flid V.R. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 9. P. 4-121 (in Russian). DOI: 10.6060/ivkkt.20216409.6465.

Chaikina M., Bulina N., Prosanov I., Ishchenko A. // Cryst. 2023. V. 13. P. 1264. DOI: 10.3390/cryst13081264.

Akram M., Alshemary A., Goh Y. F., Ibrahim A., Lintang H., Hussain R. // Mat. Sci. Eng. C. 2015. V. 56. P. 356–362. DOI: 10.1016/j.msec.2015.06.040.

Vandeginste V., Cowan C., Gomes R., Hassan T., Titman J. // J. Hazard. Mat. 2020. V. 389. P. 122150. DOI: 10.1016/j.jhazmat.2020.122150.

Ebrahimi-Kahrizsangi R., Nasiri-Tabrizi B., Chami A. // Solid State Sci. 2010. V. 12. P. 1645–1651. DOI: 10.1016/ j.solidstatesciences.2010.07.017.

Zhou H., Yang L., Gbureck U., Bhaduri S., Sikder P. // Acta Biomater. 2021. V. 127. P. 41–55. DOI: 10.1016/ j.actbio.2021.03.050.

Xin-bo X., Miao-miao C., Feng X., Zou J., Xierong Z. // Surf. Coat. Techn. 2015. V. 275. P. 69–74. DOI: 10.1016/ j.surfcoat.2015.05.038.

Shalini T., Rakkesh R., Bargavi P., Balakumar S. // Surf. Interfaces. 2023. V. 40. P. 103089. DOI: 10.1016/j.surfin.2023. 103089.

Published
2025-07-22
How to Cite
Kolchakova, G. R., & Kiryakova, D. S. (2025). INFLUENCE OF MICROWAVE IRRADIATION POWER ON THE PRODUCTION OF FLUORAPATITE FROM WASTE EGGSHELLS BY CHEMICAL CO-PRECIPITATION. ChemChemTech, 68(10), 81-86. https://doi.org/10.6060/ivkkt.20256810.7231
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)