MAGNETOTHERMAL PROPERTIES OF COPPER FERRITE
Abstract
In this work, we carried out the directed synthesis of copper ferrite (CuFe2O4) by co-precipitation from solutions with an excess of alkali at a temperature of 373 К. The methods of scanning electron microscopy and X-ray phase analysis were used to study the crystal structure and surface morphology of copper ferrite. The ratio of the characteristic peaks of the diffractogram was carried out in accordance with the JCPDS database. It is shown that copper (II) ferrite crystallizes in the structure of the cubic spinel. Microphotographs of the synthesized copper ferrite samples at different magnifications are given. It is established that ferrite particles consist of conglomerates of crystals with different sizes of individual grains. Their small scatter in size is observed. The average particle size is in the range of 100-200 nm. Using a dynamic heat flux differential scanning calorimeter, the temperature dependence of the heat capacity of copper ferrite samples was obtained in the temperature range of 273–373 K. Using an original microcalorimetric setup in the temperature range of 288–346 K and with a change in the magnetic field induction from 0 to 1.0 T, thermodynamic characteristics were obtained - the magnetocaloric effect (MCE) and the change in entropy (ΔS) during the magnetization of copper (II) ferrite. It was found that with an increase in the magnitude of the magnetic field, the magnitude of the MCE increases and decreases with increasing temperature. It was found that the temperature dependences of the magnetocaloric effect and specific heat have an extreme character. In the region of room temperatures (308–315 K), a maximum of the magnetocaloric effect and a minimum of the specific heat are observed. This previously unknown anomalous behavior of the magneto-thermal properties of copper II ferrite was discovered for the first time.
For citation:
Balmasova O.V., Korolev V.V., Efimova K.V. Magnetothermal properties of copper ferrite. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 1. P. 45-50. DOI: 10.6060/ivkkt.20246701.6851.
References
Karimipourfard D., Eslamloueyan R., Mehranbod N. Novel heterogeneous degradation of mature landfill leachate using persulfate and magnetic CuFe2O4/RGO nanocatalyst. Proc. Safety Environ. Protect. 2019. V. 131. P. 212-222. DOI: 10.1016/j.psep.2019.09.009.
Narang S.B., Pubby K. Nickel Spinel Ferrites: A Review. J. Magn. Magn. Mater. 2021. V. 2(1). P. 167163. DOI: 10.1016/ j.jmmm.2020.167163.
Shabelskaya N.P., Egorova M.A., Arzumanova A.V., Yakovenko E.A., Zababurin V.M., Vyaltsev A.V. Prepa-ration of composite materials based on cobalt (II) ferrite for purification of aqueous solutions. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 2. P. 95-102. DOI: 10.6060/ivkkt.20216402.6215.
Saravanakumar B., Ramachandran S.P., Ravi G., Ganesh V., Ramesh K. Guduru, Yuvakkumar R. Elec-trochemical performances of monodispersed spherical CuFe2O4 nanoparticles for pseudocapacitive applications. Vacuum. 2019. V. 168. P. 108798. DOI: 10.1016/j.vacuum.2019.108798.
Shabel’skaya N.P., Kukhareva V.P., Mikhailichenko S.N., Shilkina L.A., Talanov M.V., Ulyanov A.K. Fea-tures of synthesis and phase formation in the NiO-FeO-Fe2O3-Cr2O3 system. Izv. Vuzov. Sev.Kavk. Region. Tekhn. Nauki. 2015. N 2. P. 91 – 95 (in Russian). DOI: 10.17213/0321-2653-2015-2-91-95.
Bohra M., Sahoo S.C. Large magnetocaloric effect at Verwey point in nanocrystalline Fe3O4 thin films. J. Alloys Compd. 2017. V. 699. P. 1118-1121. DOI: 10.1016/j.jallcom.2017.01.013.
Zhong J., Liu W., Jiang L., Yang M., Morais P.C. Realtime magnetic nanothermometry: The use of magnetization of magnetic nanoparticles assessed under low frequency trian-gle-wave magnetic fields. Rev. Sci. Instrum. 2014. V. 85. P. 094905. DOI: 10.1063/1.4896121.
McMichael R.D., Shull R.D., Swartzendruber L.J., Bennett L.H., Watson R.E. Magnetocaloric effect in superparamagnets. J. Magn. Magn. Mater. 1992. V. 111. P. 29-33. DOI: 10.1016/0304-8853(92)91049-Y.
Shabel’skaya N.P. Synthesis and properties of binary spinels in a NiO–CuO–Fe2O3–Cr2O3 system. Glass Phys. Chem. 2017. V. 43. N 3. P. 240-245. DOI: 10.1134/S1087659617030129.
Balagurov A.M., Bobricov I.A., Maschenko M.S., San-gaa D., Simkin V.G. Structural phase transition in spinel CuFe2O4. Crystallography. 2013. V. 58. N 5. P. 696-703. DOI: 10.7868/S0023476113040048.
Ivanova N.M., Soboleva E.A., Visurkhanova Ya.A., Muldakhmetov Z. Electrochemical preparation of Fe–Cu composites based on copper (II) ferrite and their electrocatalytic properties. Electrochemistry. 2020. V. 56. N 7. P. 579-590. DOI: 10.31857/s0424857020070038.
Balmasova O.V., Korolev V.V. Adsorption of fatty acids from organic solvents solutions on surface of superfine ferromagnetics. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2009. V. 52. N 7. P. 52-56 (in Rus-sian).
Balmasova O.V., Korolev V.V., Yashkova V.I. Oleic acid adsorption–desorption isotherms on the surface of high–dispersity ferrites from a solutions in carbon tetrachloride. Russ. J. Phys. Chem. A. 2010. V. 84. N 1. P. 76-80. DOI: 10.1134/S0036024410010152.
Zavadsky A.E. Zheleznov K.N., Ramazanova A.G., Balmasova O.V., Korolev V.V., Yashkova V.I. The influence of magnetic field and temperature on the crystallization process of ultramicroscopic magnetite particles. Dokl. AN. 1998. V. 361. N 3. P. 362-365 (in Russian).
Korolev V.V., Korolev D.V., Ramazanova A.G. The calorimetric method of evaluating the performance of magnetocaloric materials. J. Therm. Anal. Calorim. 2019. V. 136. P. 937-941. DOI: 10.1007/s10973-018-7704-y.
16. Korolev V.V., Romanov A.S., Aref’ev I.M. Magnetocaloric Effect and Heat Capacity of Ferrimagnetic Nanosystems: Magnetite-Based Magnetic Liquids and Suspensions. J. Phys. Chem. 2006. V. 80. P. 464-466. DOI: 10.1134/S0036024406030277.
Egorova M.A., Shabelskaya N.P., Radzhabov A.N., Chernysheva G.M., Taranushich V. A., Zababurin V.M., Vyaltsev A.V., Ulyanova V.A. Preparation and properties of ferrite and chromite of copper (Ⅱ). Izv. Vuzov Sev. Kavk. Region. Tekhn. Nauki. 2021. N 2. P. 69-74. DOI: 10.17213/1560-3644-2021-2-69-74.
Andreenko A.S., Belov K.P., Nikitin S.A. Magnetocaloric effects in rare land magnets. Usp. Phys. Nauk. 1989. N 158. P. 553-579. DOI: 10.3367/UFNr.0158.198908a.0553.
Kuznetsov M.V., Morozov Yu.G., Belousova O.V. Synthesis of copper ferrite nanoparticles. Neorg. Mater. 2013. V. 49. N 6. С. 606-615 (in Russian). DOI: 10.7868/S0002337X13050060.
Inoue T., Iida S. Specific Heats of Copper Ferrite. J. Phys. Soc. Jpn. 1958. N 13. P. 656. DOI: 10.1143/JPSJ.13.656A.