SYNTHESIS OF HIGH SILICA ZEOLITES USING DEEP EUTECTIC SOLVENTS

  • Ludmila L. Korobitsyna Institute of Petroleum Chemistry of SB of the RAS
  • Vladimir V. Kozlov Institute of Petroleum Chemistry of SB of the RAS
  • Mekhrob R. Sholidodov Institute of Petroleum Chemistry of SB of the RAS
  • Ludmila M. Velichkina Institute of Petroleum Chemistry of SB of the RAS
  • Yakov E. Barbashin Institute of Petroleum Chemistry of SB of the RAS
  • Liubov K. Altunina Institute of Petroleum Chemistry of SB of the RAS
Keywords: zeolite ZSM-5, zeolite synthesis, deep eutectic solvents, structure-forming additive, structure, acid centers

Abstract

This paper presents the results of exploratory research in the field of synthesis of zeolite type ZSM-5 using deep eutectic solvents (DES) as structure-forming additives. The synthesis of zeolites was carried out by hydrothermal synthesis. As a source of silicon and aluminum, the sodium salt of silicic acid and the aqueous salt (nonahydrate) of aluminum nitrate were used. Binary and triple DES systems were used as structure–forming additives necessary for the initiation of the growth of zeolite crystals: "choline chloride – urea", "pentaerythritol – urea", "pentaerythritol – choline chloride", "urea – choline chloride – pentaerythritol" and "pentaerythritol – urea - boric acid". The study of synthesized materials by IR spectroscopy and X-ray phase analysis showed the success of obtaining zeolites in the presence of all structure–forming additives, with the exception of synthesis with the binary system "pentaerythritol - choline chloride" as a structure-forming additive. Structural parameters were determined for successfully synthesized zeolite samples: the specific surface area, distribution and pore size of the channels. It was found that the synthesis of zeolite in the presence of various DES leads to the formation of more mesoporous zeolites, having a smaller pore size, compared with the previously synthesized comparison zeolite. The study of the morphological features of the surface of zeolites synthesized using different DES showed a significant difference in the nature and shape of elementary zeolite particles. The use of more complex triple DES systems as structure-forming additives leads to the formation of a larger set of different forms of zeolite particles having the same elemental composition. The study of the acid characteristics of the synthesized samples and their comparison with the characteristics of the previously obtained and used zeolite allows us to put forward an assumption about the potential ability of zeolites to exhibit catalytic activity in the composition of catalysts for the processing of hydrocarbons.

For citation:

Korobitsyna L.L., Kozlov V.V., Sholidodov M.R., Velichkina L.M., Barbashin Ya.E., Altunina L.K. Synthesis of high silica zeolites using deep eutectic solvents. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 11. P. 76-84. DOI: 10.6060/ivkkt.20236611.14t.

References

Maksimov A.L. Oil refining and petrochemistry: import substitution and ensuring technological independence. Vestn. RAN. 2022. V. 92. N 10. P. 930-939 (in Russian). DOI: 10.31857/S0869587322100073.

Noskov A.S. Scientific and technical level of research and prospects of import substitution in the field of industrial catalysts. Vestn. RAN. 2022. V. 92. N 10. P. 940-949 (in Russian). DOI: 10.31857/S0869587322100085.

Zhdaneev O.V., Korenev V.V., Rubtsov A.S. Key technology development priorities for the oil refinery sector in Russia. Russ. J. Appl. Chem. 2020. V. 93. N 9. P. 1314-1325. DOI: 10.1134/S1070427220090025.

Parkhomchuk E.V., Sashkina K.A., Parmon V.N. New heterogeneous catalysts based on zeolites with hierarchical pore system. Petrol. Chem. 2016. V. 56. N 3. P. 197-204. DOI: 10.1134/S0965544116030105.

Travkina O.S., Agliullin M.R., Kutepov B.I. State of the art in the industrial production and application of zeolite-containing adsorbents and catalysts in Russia. Catal. Ind. 2022. V. 14. N 1. P. 56-65. DOI: 10.1134/S207005042201010X.

Rodionova L.I., Knyazeva E.E., Ivanova I.I., Konnov S.V. Application of nanosized zeolites in petroleum chemis-try: synthesis and catalytic properties (review). Petrol. Chem. 2019. V. 59. N 4. P. 455-470. DOI: 10.1134/S0965544119040133.

Velichkina L.M., Korobitsyna L.L., Ulzii B., Vosmerikov A.V., Tuya M. Physicochemical and catalytic properties of iron- and indium-containing zeolites. Petrol. Chem. 2013. V. 53. N 2. P. 121-126. DOI: 10.1134/S0965544113020126.

Radomskii V.S., Astapova E.S., Radomskii S.M. Structure and thermal properties of zeolites modified with Fe and Cu nanopowders. Inorg. Mater. 2015. V. 51. N 10. P. 999-1007. DOI: 10.1134/S0020168515100131.

Erofeev V.I., Khomyakov I.S., Egorova L.A. Production of high-octane gasoline from straightrun gasoline on ZSM-5 modified zeolites. Theor. Found. Chem. Eng. 2014. V. 48. N 1. P. 71-76. DOI: 10.1134/S0040579514010023.

Echevsky G.V., Echevskaya O.G. Coking Mechanism and the Distribution of Agglomeration Products in High-Silica MFI-Type Zeolites. Chem. Sustain. Dev. 2023. V. 31. N 1. P. 20-31. DOI: 10.15372/CSD2023435.

Ostrovskii N.M. Coking of catalysts: mechanisms, models, and influence. Kin. Catal. 2022. V. 63. N 1. P. 52-66. DOI: 10.1134/S0023158422010062.

Velichkina L., Barbashin Ya., Vosmerikov A. Effect of Acid Treatment on the Properties of Zeolite Catalyst for Straight-Run Gasoline Upgrading. Catal. Res. 2021. V. 1. N 4. P. 1-16. DOI: 10.21926/cr.2104004.

Müller M., Harvey G., Prins R. Comparison of the dealu-mination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR. Micropor. Mesopor. Mater. 2000. V. 34. P. 135–147. DOI: 10.1016/S1387-1811(99)00167-5.

Gordina N.E., Borisova T.N., Klyagina K.S., Rumyantsev R.N., Prozorov D.A. Comparative analysis of the properties of LTA type zeolite depending on the production method: hydrothermal and ultrasonic. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 9. P. 90-96. DOI: 10.6060/ivkkt.20226509.6633.

Gordina N.E., Prokof’ev V.Yu., Borisova T.N., Elizarova A.M. Synthesis of granular low-modulus zeolites from me-takaolin using mechanochemical activation and ultrasonic treatment. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 7. P. 99-106. DOI: 10.6060/ivkkt201962fp.5725.

Prokof’ev V.Yu., Gordina N.E., Zakharov O.N., Tsveto-va E.V., Kolobkova A.E. Granulated low-modulus zeolites for extraction of Co cations. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 6. P. 44-49. DOI: 10.6060/ivkkt.20206306.6144.

Velichkina L.M., Korobitsyna L.L., Vosmerikov A.V., Radomskaya V.I. The synthesis and physicochemical and catalytic properties of SHS zeolites. Russ. J. Phys. Chem. A. 2007. V. 81. N 10. P. 1618-1622. DOI: 10.1134/S0036024407100135.

Chernov E.D., Lukoyanov A.V., Anisimov V.I. Effect of Electronic Correlations on the Electronic Structures of the FeAlO3 and FeSiO3 Compounds. J. Experim. Theor. Phys. 2021. V. 132. N 4. P. 548-555. DOI: 10.1134/S1063776121040221.

Dyachenko A.A., Shorikov A.O., Lukoyanov A.V., Ani-simov V.I. Two successive spin transitions in a wide range of pressure and coexistence of high- and low-spin states in clinoferrosilite FeSiO3. Phys. Rev. B. 2016. V. 93. P. 245121-245126. DOI: 10.1103/PhysRevB.93.245121.

Germov A.Y., Prokopyev D.A., Mikhalev K.N., Golobo-rodskiy B.Y., Uimin M.A., Yermakov A.E., Konev A.S., Minin A.S., Novikov S.I., Gaviko V.S., Murzakaev A.M. Quantitative phase analysis of magnetic Fe@C nanoparticles. Mater. Today Commun. 2021. V. 27. P. 102382-102390. DOI: 10.1016/j.mtcomm.2021.102382.

Boukhvalov D.W., Gornostyrev Y.N., Uimin M.A., Korolev A.V., Yermakov A.E. Atomic, electronic and magnetic structure of graphene/iron and nickel interfaces: Theory and experiment. RSC Adv. 2015. V. 5. N 12. P. 9173-9179. DOI: 10.1039/c4ra14165b.

Galakhov V.R., Shamin S.N., Uimin M.A., Ermakov A.E., Bukhvalov D.W. X-ray spectroscopy of carbon-encapsulated iron nanoparticles. J. Struct. Chem. 2015. V. 56. N 3. P. 478-485. DOI: 10.1134/S0022476615030130.

Klimenko N.N., Kiseleva K.I., Delitsyn L.M., Sigaev V.N. Microstructure of fly ash-based geo-polymers for applications in sustainable construction. Steklo Keram. 2022. V. 95. N 2. P. 32-39. (in Russian). DOI: 10.14489/glc.2022.02.pp.032-039.

Podgorodetskii G.S., Gorbunov V.B., Agapov E.A., Er-okhov T.V., Kozlova O.N. Processing ash and slag wastes from thermal power stations. Part 1. Steel Translation. 2018. V. 48. N 6. P. 339-345. DOI: 10.3103/S0967091218060074.

Podgorodetskii G.S., Gorbunov V.B., Agapov E.A., Er-okhov T.V., Kozlova O.N. Processing ash and slag wastes from thermal power stations. Part 2. Steel Translation. 2018. V. 48. N 7. P. 435-440. DOI: 10.3103/S0967091218070136.

Ismagilov Z.R., Shikina N.V., Rudina N.A., Ushakov V.A., Zhuravleva N.V., Potokina R.R., Teryaeva T.N. Aluminosilicate microsperes from the fly ash of Kuzbass coalburning power stations. Solid Fuel Chem. 2015. V. 49. N 4. P. 245-253. DOI: 10.3103/S0361521915040035.

Velichkina L.M., Zaikovskii V.I., Barbashin Ya.E., Ryabova N.V., Perevezentsev S.A., Vosmerikov A.V. Changes in the Physicochemical Properties of Nickel-Containing ZSM-5 Zeolite under Mechanical Treatment. Chem. Sustain. Dev. 2020. V. 28. N 4. P. 366–374. DOI: 10.15372/CSD2020242.

Published
2023-09-30
How to Cite
Korobitsyna, L. L., Kozlov, V. V., Sholidodov, M. R., Velichkina, L. M., Barbashin, Y. E., & Altunina, L. K. (2023). SYNTHESIS OF HIGH SILICA ZEOLITES USING DEEP EUTECTIC SOLVENTS. ChemChemTech, 66(11), 76-84. https://doi.org/10.6060/ivkkt.20236611.14t
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)