PHASE TRANSFORMATIONS OF GROUP IV ELEMENTS: CARBON, SILICON, GERMANIUM AFTER TREATMENT UNDER CYCLIC STRESSES UP TO 6 GPA

  • Boris A. Kulnitskiy Technological Institute for Superhard and Novel Carbon Materials
  • Tatyana A. Gordeeva Technological Institute for Superhard and Novel Carbon Materials
  • Danila A. Ovsyannikov Technological Institute for Superhard and Novel Carbon Materials
  • Mikhail Yu. Popov Technological Institute for Superhard and Novel Carbon Materials
  • Vladimir D. Blank Technological Institute for Superhard and Novel Carbon Materials
Keywords: planetary mill, phase transformations, twinning, silicon, germanium, diamond, transmission electron microscopy

Abstract

The processing powders of various materials in a planetary mill is currently widely used for the production of nanostructured materials. This method is somewhat similar to shock-wave loading. Processing in the mill promotes grinding, formation of defects and metastable highpressure phases in various powders. Nanostructured silicon, germanium, and diamond are promising materials for thermoelectronics, membrane manufacturing, and other applications. The presence of defects affects the features of their zone structure. The structure and properties of all three materials depend on the processing conditions. In this work, the structure of germanium and silicon powders after their processing in the Fritsch Planetary Micro Mill PULVERISETTE 7 premium line in a mixture with diamond particles (5-15% by weight) was studied separately using high-resolution transmission electron microscopy using (JEM-2010 device). The processing time was 120 min (processing cycle: 1 min of grinding and 3 min of cooling), the maximum temperature of the sample did not exceed 420K. As a result of processing, twins and packaging defects along the {111} plane were found in the elements of group IV. It was found that in addition to the initial silicon phase Si-I and germanium Ge-I, the samples contained high-pressure phases such as Si-IV, Ge-IV, and twins. The formation of the 9R polytype was also found in silicon and germanium. Thus, it is experimentally shown that for diamond, silicon and germanium at temperatures below 420K and cyclic stresses less than 6 GPA, plastic deformation by mechanical twinning is observed.

References

Rödl C., Sander T., Bechstedt F., Vidal J., Olsson P., Laribi S., Guillemoles J.-F. Wurtzite silicon as a potential

absorber in photovoltaics: Tailoring the optical absorption by applying strain. Phys. Rev. B. 2015. V. 92. P. 45207. DOI: 10.1103/PhysRevB.92.045207.

Raffy C., Furthmüller J., Bechstedt F. Properties of hexagonal polytypes of group-IV elements from first-principles calculations. Phys. Rev. B. 2002. V. 66. P. 75201. DOI: 10.1103/PhysRevB.66.075201.

Bandet J., Despax B., Caumont M. Vibrational and electronic properties of stabilized wurtzite-like silicon. J. Phys. D. Appl. Phys. 2002. V. 35. N 3. P. 234-239. DOI: 10.1088/0022-3727/35/3/311/meta.

Ovsyannikov D. A., Popov M.Y., Buga S.G., Kirichenko A.N., Tarelkin S. A., Aksenenkov V.V., Tat’yanin E.V., Blank V.D. Transport properties of nanocomposite thermoelectric materials based on Si and Ge. Phys. Solid State. 2015. V. 57. P. 605-611. DOI: 10.1134/S1063783415030208.

Koch C.C. Structural nanocrystalline materials: an overview. J. Mater. Sci. 2007. V. 42. N 5. P. 1403-1414. DOI:

1007/s10853-006-0609-3.

Kulnitskiy B., Annenkov M., Perezhogin I., Popov M., Ovsyannikov D., Blank V. Mutual transformation between crystalline phases in silicon after treatment in a planetary mill: HRTEM studies. Acta Crystallogr. Sect. B

Struct. Sci. Cryst. Eng. Mater. 2016. V. 72. P. 733-737. DOI: 10.1107/S2052520616011422.

Tonkov E.Yu. Phase Transformations of Elements under High Pressure. M.: Nauka. 1979. 192 p. (in Russian).

Mujica A., Rubio A., Munoz A., Needs R.J. High-pressure phases of group-IV, III–V, and II–VI compounds. Rev. Mod. Phys. 2003. V. 75. N 3. P. 863-912. DOI: 10.1103/RevModPhys.75.863.

Haberl, B., Guthrie M., Malone B. D., Smith J.S. Sinogeikin S. V., Cohen M. L., Williams J. S., Shen G.,

Bradby J. E. Controlled formation of metastable germanium polymorphs. Phys. Rev. B. 2014. V. 89. N 14. P. 144111. DOI: 10.1103/PhysRevB.89.144111.

Kwon Y.-S., Gerasimov K.B., Yoon S.-K. Ball temperatures during mechanical alloying in planetary mills. J. Alloys Compd. 2002. V. 346. P. 276-291. DOI: 10.1016/S0925-8388(02)00512-1.

El-Eskandarany M.S. Mechanical alloying: For fabrication of advanced engineering materials. NY: Noyes Publications. 2013. 242 p.

Gusev A.I., Kurlov A.S. Production of nanocrystalline powders by high-energy ball milling: model and experiment. Nanotechnology. 2008. V. 19. N 26. P. 265302. DOI: 10.1088/0957-4484/19/26/265302.

Kulnitskiy B., Perezhogin I., Dubitsky G., Blank V. Polytypes and twins in the diamond–lonsdaleite system

formed by high-pressure and high-temperature treatment of graphite. Acta Crystallogr. Sect. B Struct. Sci. Cryst.

Eng. Mater. 2013. V. 69. P. 474-479. DOI: 10.1107/S2052519213021234.

Kulnitskiy B.A., Perezhogin I.A., Popov M.Y., Ovsyannikov D.A., Blank V. D. Peculiarities of the Twinning in

Silicon during Ball Milling in the Presence of Two Different Materials. Symmetry. 2018. V. 10. P. 200. DOI: 10.3390/sym10060200.

Gordeeva T.A., Ovsyannikov D.A., Popov M.Yu., Kulnitskiy B.A., Blank V.D. Structure of Germanium Treated

in a Planetary Mill. FTT. 2020. V. 62. N 10. P. 1765–1768 (in Russian). DOI: 10.1134/S106378342010008X.

Fissel A., Bugiel E., Wang C.R., Osten H.J. Formation of twinning-superlattice regions by artificial stacking of Si layers. J. Cryst. Growth. 2006. V. 290. N 1. P. 392-397. DOI: 10.1016/j.jcrysgro.2006.02.009.

Mylvaganam K., Zhang L.C. Nanotwinning in monocrystalline silicon upon nanoscratching. Scr. Mater. 2011. V. 65. P. 214-216. DOI: 10.1016/j.scriptamat.2011.04.012.

Ruffell S., Bradby J.E., Williams J.S. Formation and growth of nanoindentation-induced high pressure phases in

crystalline and amorphous silicon. J. Appl. Phys. 2007. V. 102. N 6. P. 063521. DOI: 10.1063/1.2781394.

Zhu Y.T., Liao X.Z., Wu X.L. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 2012. V. 7. N 1.

P. 1-62. DOI: 10.1016/j.pmatsci.2011.05.001.

Gordeeva T., Kulnitskiy B., Ovsyannikov D., Popov M., Blank V. Twinning formation in nanodiamonds after treatment in a planetary mill: HRTEM studies. IOP Conference Series: Materials Science and Engineering. 2019.

V. 693. P. 12022. DOI: 10.1088/1757-899X/693/1/012022.

Gordeeva T., Kulnitskiy B., Ovsyannikov D., Popov M., Blank V. Plastic deformation of diamond by mechanical

twinning at temperatures significantly lower than Debye temperature. Chem. Phys. Lett. 2019. V. 730. P. 138-140. DOI: 10.1016/j.cplett.2019.05.057.

Lifshitz Y., Duan X.F., Shang N., Li Q., Wan L., Bello I., Lee T. Epitaxial diamond polytypes on silicon. Nature.

V. 412. N 6845. P. 404.

Sowa H., Koch E. A proposal for a transition mechanism from the diamond to the lonsdaleite type. Acta Cryst. A: 2001. V. 57. N 4. P. 406-413. DOI: 10.1107/S0108767301003087.

Fissel A., Bugiel E., Wang C.R., Osten H.J. Formation of twinning-superlattice regions by artificial stacking of Si layers. J. Cryst. Growth. 2006. V. 290. N 2. P. 392-397. DOI: 10.1016/j.jcrysgro.2006.02.009.

Zhang J.Y., Ono H., Uchida K., Nozaki S., Morisaki H. Wurtzite Silicon Nanocrystals Deposited by the Cluster‐Beam Evaporation Technique. Phys. Status Solidi. 2001. V. 223. N 1. P. 41-45. DOI: 10.1002/1521- 3951(200101)223:1<41::AID-PSSB41>3.0.CO;2-V.

Fissel A., Bugiel E., Wang C.R., Osten H.J. Formation of Si twinning-superlattice: First step towards Si polytype

growth. Mater. Sci. Eng., B. 2006.V. 134. N 2-3. P. 138-141. DOI: 10.1016/j.mseb.2006.06.046.

Cerva H. High-resolution electron microscopy of diamond hexagonal silicon in low pressure chemical vapor

deposited polycrystalline silicon. J. Mater. Res. 1991. V. 6. N 11. P. 2324-2336. DOI: 10.1557/JMR.1991.2324.

Zhang Y., Iqbal Z., Vijayalakshmi S., Qadri S., Grebel H. Formation of hexagonal-wurtzite germanium by pulsed laser ablation. Solid State Commun. 2000. V. 115. N 12. P. 657-660. DOI: 10.1016/S0038-1098(00)00259-3.

Vandeperre L.J., Giuliani F., Lloyd S.J., Clegg W.J. The hardness of silicon and germanium. Acta Mater. 2007. V. 55. N 18. P. 6307-6315. DOI: 10.1016/j.actamat.2007.07.036.

Müllner P. Disclination models for deformation twinning. Solid State Phenomena. 2002. V. 87. P. 227–238. DOI:10.4028/www.scientific.net/SSP.87.227.

Kiefer F., Hlukhyy V., Karttunen A.J. Fässler T.F., Gold C., Scheidt E-W., Scherer W., Nylén J., Häussermann U. Synthesis, structure, and electronic properties of 4Hgermanium. J. Mater.Chem. 2010. V. 20. N 9. P. 1780-1786. DOI: 10.1039/B921575A.

Christian J.W., Mahajan S. Deformation twinning. Prog. Mater. Sci. 1995. V. 39. P. 1-157. DOI: 10.1016/0079-6425(94)00007-7.

Ogata S., Li J., Hirosaki N., Shibutani Y., Yip S. Ideal shear strain of metals and ceramics. Phys. Rev. B. 2004 V. 70 P. 104104. DOI: 10.1103/PhysRevB.70.104104.

Ganchenkova M., Nieminen R.M. Mechanical Properties of Silicon Microstructures. Handbook of Silicon Based

MEMS Materials and Technologies. 2015. P. 263-303. DOI:10.1016/B978-0-12-817786-0.00009-8.

Published
2020-11-22
How to Cite
Kulnitskiy, B. A., Gordeeva, T. A., Ovsyannikov, D. A., Popov, M. Y., & Blank, V. D. (2020). PHASE TRANSFORMATIONS OF GROUP IV ELEMENTS: CARBON, SILICON, GERMANIUM AFTER TREATMENT UNDER CYCLIC STRESSES UP TO 6 GPA. ChemChemTech, 63(12), 10-15. https://doi.org/10.6060/ivkkt.20206312.8y
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)

1 2 > >>