CARBON CONTENT INFLUENCE ON PHYSICO-MECHANICAL PROPERTIES OF TUNGSTEN-BASED COMPOSITES WITH MARAGING-BASED BINDER
Abstract
The effect of carbon content on physico-mechanical properties in tungsten-based composite material obtained by spark plasma sintering method was investigated in this work. Maraging steel-based composition was used as binder and contained such metals as Fe, Ni, Co, Mo, Ti. Carbon content (synthetic diamonds of 3/2 fraction) was varied from 0.1 to 0.3 wt.%. It was shown that 0.1 % wt of carbon resulted in composite durability and plasticity growth though further increase in carbon content up to 0.3% wt. resulted in composite durability growth accompanied with composite plasticity decrease. Sintering time influence (3, 5, 7 min) was investigated. It was shown that this sintering process parameter has ambiguous influence on physico-mechanical properties of obtained composite material due to cumulative effect of other parameters. Sintering time temperature in 1300–1350 °C is investigated. It was shown that 1320 °C is optimal sintering temperature. 1350 °C resulted in binder liquefaction and its components migration from die mould. Aging process of sintered material with maraging-based binder was investigated. In common case, this process resulted in durability, plasticity and hardness growth of composite material. Spark plasma sintering method application allows to minimization of tungsten grain growth. After sintering tungsten grains size remained in 1–3 μm.
References
Zelikman A.N., Korshunov B.G. Rare metals metallurgy. M.: Metallurgiya. 1991. 432 p. (in Russian).
Muresan R., Riti-Minoc E., Prica C., M. Improving me-chanical properties of sintered wolfram based alloy with liq-uid phase though controlled cooling parameters. Arch. Metal-lurgy Mater. 2012. V. 57. P. 87-92. DOI: 10.2478/v10172-011-0157-y.
Cong X., Fan J.L., Ding F. Microstructure and highly en-hanced mechanical properties of fine-grained tungsten heavy alloy after one-pass rapid hot extrusion. Mater. Sci. Eng. 2011. 538. P. 3646-3652. DOI: 10.1016/j.msea.2011.01.070.
Caliskan N., Durli N., Bor S. Swaging of a liquid phase sintered 90W-7Ni-3Fe tungsten heavy alloy. Internat. J. Re-fract. Metal. Hard Mater. 2013. 36. P. 260-264. DOI: 10.1016/j.ijrmhm.2012.10.001.
Tokita M. Development of square-shaped large-size WC/Co/Ni system FGM fabricated by Spark Plasma Sinter-ing (SPS) method and its industrial applications. Mater. Sci. Forum. 2005. V. 492-493. P. 711-718. DOI: 10.4028/ www.scientific.net/MSF.492-493.711.
Xiang D.P., Ding L., Li Y.Y., Chen X.Y., Zhang T.M. Fabricating fine-grained tungsten heavy alloy by spark plas-ma sintering of low-energy ball-milled W–2Mo–7Ni–3Fe powders. Mater. Sci. Eng. A. 2013. V. 578. P. 18-23. DOI: 10.1016/j.msea.2013.04.065.
Machado I., Girardini L., Lonardelli I., Molinari A. The study of ternary carbides formation during SPS consolidation process in the WC–Co–steel system. Internat. J. Refract. Metal. Hard Mater. 2009. V. 27. P. 883-891. DOI: 10.1016/j.ijrmhm.2009.05.001.
Ding L., Xiang D.P., Pan Y.L., Li Y.Y. Mechanical prop-erties and microstructural evolution of Mo-Co-co-strengthened W-Ni-Fe alloys by spark plasma sintering. J. Alloys Compounds. 2017. V. 712. P. 593-598. DOI: 10.1016/j.jallcom.2017.04.141.
Savinykha A.S., Mandelc K., Razorenova S.V., Krügerc L. The influence of the cobalt content on the strength proper-ties of tungsten carbide ceramics under dynamic loads. Tech-nic. Phys. 2018. V. 63. P. 357–362. DOI: 10.1134/ S1063784218030210.
Gold’stein M.I., Grachev I.S., Veksler Yu.G. Special steels, college textbook. M.: Metallurgiya. 1985. 408 p. (in Russian).
Rajaei H., Farvizi M., Mobasherpour I., Zakeri M. Effect of spark plasma sintering temperature on microstructure and mechanical properties of mullite - WC composites. Internat. J. Refract. Metal. Hard Mater. 2018. V. 70. P. 197-201. DOI: 10.1016/j.ijrmhm.2017.10.012.
Zhao J., Holland T., Unuvar C., Munir Z.A. Sparking plasma sintering of nanometric tungsten carbide. Internat. J. Refract. Metal. Hard Mater. 2009. V. 27. P. 130–139. DOI: 10.1016/j.ijrmhm.2008.06.004.
Dudina D.V., Mukherjee A.K. Reactive spark plasma sin-tering: successes and challenges of nanomaterial synthesis. J. Nanomaterials. 2013. Article ID 625218. 12 p. DOI: 10.1155/2013/625218.
Ghahremani D., Ebadzadeh T., Maghsodipour A. Spark plasma sintering of mullite: Relation between microstructure, properties and spark plasma sintering (SPS) parameters. Ce-ram. Internat. 2015. V. 41. P. 6409-6416. DOI: 10.1016/j.ceramint.2015.01.078.
Lee G., McKittrick J., Ivanov E., Olevsky E.A. Densifica-tion mechanism and mechanical properties of tungsten pow-der consolidated by spark plasma sintering. Internat. J. Re-fract. Metal. Hard Mater. 2016. V. 61. P. 22-29. DOI: 10.1016/j.ijrmhm.2016.07.023.
Girardini L., Zadra M., Casari F., Molinari A. SPS, binderless WC powders, and the problem of sub carbide. Met. Powder Rep. 2008. V. 63. P. 18-22. DOI: 10.1016/S0026-0657(09)70039-6.
Chuvildeev V.N., Panov D.V., Boldin M.S., Nokhrin A.V., Blagoveshchensky Yu.V., Sakharov N.V., Shotin S.V., Kotkov D.N. Structure and properties of advanced ma-terials obtained by Spark Plasma Sintering. Acta Astronauti-ca. 2014. V. 109. P. 172-176. DOI: 10.1016/j.actaastro.2014.11.008.
Tokita M. The potential of Spark Plasma Sintering (SPS) method for the fabrication on an industrial scale of function-ally graded materials. Advan. Sci. Technol. 2010. V. 63. P. 322-331. DOI: 10.4028/www.scientific.net/AST.63.322.
Panov V.S. Nanostructured sintered WC-Co hard metals. Powder Metallurgy Metal Ceram. 2015. V. 53. P. 643-654. DOI: 10.1007/s11106-015-9670-2.
Zhanzhan Zhang, Yunbo Chen, Lingli Zuo, Yang Zhang, Yesi Qi, Kewei Gao. The effect of volume fraction of WC particles on wear behavior of in-situ WC/Fe compo-sites by spark plasma sintering. Internat. J. Refract. Metal. Hard Mater. 2017. V. 69. P. 196-208. DOI: 10.1016/j.ijrmhm.2017.08.009.
Chuvil'deev V.N., Blagoveshchenskiy Yu.V., Nokhrin A.V., Boldin M.S., Sakharov N.V., Isaeva N.V., Shotin S.V., Belkin O.A., Popov A.A., Smirnova E.S., Lantsev E.A. Spark plasma sintering of tungsten carbide nanopow-ders obtained through DC arc plasma synthesis. J. Alloys Compounds. 2017. V. 708. P. 547-561. DOI: 10.1016/j.jallcom.2017.03.035.
Hwan-Cheol Kim, In-Jin Shon, J.E. Garay, Munir Z.A. Consolidation and properties of binderless sub-micron tung-sten carbide by field-activated sintering. Internat. J. Refract. Metal. Hard Mater. 2004. V. 22. P. 257-264. DOI: 10.1016/j.ijrmhm.2004.08.003.
Shi-Kuan Sun, Yan-Mei Kan, Guo-Jun Zhang. Fabrica-tion of nanosized tungsten carbide ceramics by reactive Spark Plasma Sintering. J. Am. Ceram. Soc. 2011. V. 94. P. 3230-3233. DOI: 10.1111/j.1551-2916.2011.04813.x.
Akihiro Nino, Kensuke Takahashi, Shigeaki Sugiyama, Hitoshi Taimatsu. Effects of carbon addition on microstruc-tures and mechanical properties of binderless tungsten car-bide. Mater. Transact. 2012. V. 53. P. 1475-1480. DOI: 10.2320/matertrans.M2012148.