METHOD OF MICROWAVE ACOUSTIC RESEARCH OF MATERIALS UNDER THE HIGH PRESSURE

  • Boris P. Sorokin Technological Institute for Superhard and Novel Carbon Materials
  • Nikita O. Asafiev Technological Institute for Superhard and Novel Carbon Materials
  • Danila A. Ovsyannikov Technological Institute for Superhard and Novel Carbon Materials
  • Gennady M. Kvashnin Technological Institute for Superhard and Novel Carbon Materials
  • Mikhail Yu. Popov Technological Institute for Superhard and Novel Carbon Materials
  • Nikolay V. Luparev Technological Institute for Superhard and Novel Carbon Materials
  • Anton V. Golovanov Technological Institute for Superhard and Novel Carbon Materials
  • Victor V. Aksenenkov Technological Institute for Superhard and Novel Carbon Materials
  • Vladimir D. Blank Technological Institute for Superhard and Novel Carbon Materials
Keywords: integrated measuring system, single crystal diamond, aluminum-scandium nitride, HBAR, microwave band, high pressure, acoustic properties, molybdenum, plastic deformation, relaxation

Abstract

The arrangement of a new integrated measuring system (IMS) "HBAR + DAC" and its application to study changes in the acoustic properties of a paper and polycrystalline molybdenum samples under the influence of high pressure are discussed. When creating an IMS for the synthesis of piezoelectric films of aluminum-scandium nitride, the magnetron deposition method was used. The quality and thickness of the films were controlled by X-ray diffraction analysis and atomic force microscopy. For the first time, it is shown that the HBAR in the IMS content has good operational characteristics in the microwave band up to 8.8 GHz under the high-pressure impact on the samples. A decrease in the Q-factor of an HBAR as a sensitive element occurred to values of ~2500 – 3000 at the upper pressure limit, which is quite sufficient for accurate measurements of the resonant frequencies of acoustic overtones. The possibilities of IMS for studying the features in the behavior of solids under the high-pressure impact and the registration of plastic deformations in metals are demonstrated. It is found that the pressure dependence of the relative frequency shift of overtones during compression of a paper sample has a linear character. Thanks to this, the calibration of the high-pressure chamber on diamond anvils was performed using the RAMAN method. It is found that the frequency shift of overtones allows more accurately determining the stresses in the diamond anvil up to 5 GPa. When compressing a sample of polycrystalline molybdenum, the phenomena of plastic deformation and creep, as well as the transit flight of an acoustic wave through the sample, starting from a pressure of 3 GPa, were detected. The results obtained will be useful for researchers, students and postgraduates in the fields of high pressure physics and physical acoustics.

For citation:

Sorokin B.P., Asafiev N.O., Ovsyannikov D.A., Kvashnin G.M., Popov M.Yu., Luparev N.V., Golovanov A.V., Aksenenkov V.V., Blank V.D. Method of microwave acoustic research of materials under the high pressure. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 11. P. 49-58. DOI: 10.6060/ivkkt.20226511.4y.

References

Syassen K. Ruby under pressure. High Pressure Res. 2008. V. 28. N 2. P. 75–126. DOI: 10.1080/08957950802235640.

Popov M. Pressure measurements from Raman spectra of stressed diamond anvils. J. Appl. Phys. 2004. V. 95. P. 5509-5514. DOI: 10.1063/1.1712018.

Spetzler H.A., Chen G., Whitehead S., Getting I.C. A new ultrasonic interferometer for the determination of equa-tion of state parameters of submillimeter single crystals. Pure Appl. Geophys. 1993. V. 141. P. 341-377. DOI: 10.1007/978-3-0348-5108-4_8.

Li B., Liebermann R.C. Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry. Phys. Earth Planet Inter. 2014. V. 233. P. 135-153. DOI: 10.1016/j.pepi.2014.05.006.

Spetzler H.A., Chen A., Chen G., Herrmannsdoerfer G., Schulze H., Weigel R. Ultrasonic measurements in a diamond anvil cell. Phys. Earth Planet Inter. 1996. V. 98. P. 93-99. DOI: 10.1016/S0031-9201(96)03171-8.

Bassett W.A., Reichmann H.J., Angel R.J., Spetzler H., Smyth J.R. New diamond anvil cells for gigahertz ultrasonic interferometry and X-ray diffraction. Am. Mineral. 2000. V. 85. P. 283–287. DOI: 10.2138/am-2000-2-303.

Reichmann H.J., Angel R.J., Spetzler H., Bassett W.A. Ultrasonic interferometry and X-ray measurements on MgO in a new diamond anvil cell. Am. Mineral. 1998. V. 83. P. 1357–1360. DOI: 10.2138/am-1998-11-1226.

Jacobsen S.J., Reichmann H.J., Kantor A., Spetzler H.A. In: Advances in High-Pressure Technology for Geophysical Applications. Elsevier. 2005. P. 25–48. DOI: 10.1016/B978-044451979-5.50004-1.

Angel R.J., Bujak M., Zhao J., Gatta D., Jacobsen S.D. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 2007. V. 40. P. 26–32. DOI: 10.1107/S0021889806045523.

Chigarev N., Zinin P., Ming Li-Chung, Amulele G., Bulou A., Gusev V. Laser generation and detection of longitudinal and shear acoustic waves in a diamond anvil cell. Appl. Phys. Lett. 2008. V. 93. P. 181905. DOI: 10.1063/1.3013587.

Cai N., Chen T., Qi X., Li B. Elastic anomalies across phase transitions of praseodymium to 12 GPa. J. Appl. Phys. 2018. V. 124. P. 185901. DOI: 10.1063/1.5046311.

Zou Y., Li Y., Chen H., Welch D., Zhao Y., Li B. Thermoelasticity and anomalies in the pressure dependence of phonon velocities in niobium. Appl. Phys. Lett. 2018. V. 112. P. 011901. DOI: 10.1063/1.5009617.

Qi X., Cai N., Wang S., Li B. Thermoelastic properties of tungsten at simultaneous high pressure and temperature. J. Appl. Phys. 2020. V. 128. P. 105105. DOI: 10.1063/5.0022536.

Hu Q., Li B., Gao X., Bi Y., Su L., Mao Ho-kwang. Ultrasound elasticity of diamond at gigapascal pressures. PNAS. 2021. V. 118. P. 2118490118. DOI: 10.1073/pnas.2118490118.

Luparev N.V., Sorokin B.P., Aksenenkov V.V. Synthesis and research of aluminum-scandium nitride thin films as a part of piezoelectric layered structures based on the synthetic diamond single crystalline substrates. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 12. P. 77-84 (in Russian). DOI: 10.6060/ivkkt.20206312.6312.

Akiyama M., Kamohara T., Kano K., Teshigahara A., Takeuchi Y., Kawahara N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009. V. 21. P. 593-596. DOI: 10.1002/adma.200802611.

Sorokin B.P., Asafiev N.O., Kvashnin G.M., Scherbakov D.A., Terentiev S.A., Blank V.D. Toward 40 GHz excita-tion of diamond-based HBAR. Appl. Phys. Lett. 2021. V. 118. P. 083501. DOI: 10.1063/5.0038867.

Golovanov A.V., Luparev N.V., Sorokin B.P. Modification of diamond surface during photolithography, plasma-chemical cleaning, and magnetron deposition. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 11. P. 49-56 (in Russian). DOI: 10.6060/ivkkt.20206311.6232.

Shvyd’ko Yu., Stoupin S., Blank V., Terentyev S. Near-100% Bragg reflectivity of X-rays. Nature Photonics. 2011. V. 5. P. 539–542. DOI: 10.1038/NPHOTON.2011.197.

Blank V., Popov M., Buga S. Is C60 fullerite harder than diamond? Phys. Lett. A. 1994. V. 188. P. 281-286. DOI: 10.1016/0375-9601(94)90451-0.

Sorokin B.P., Kvashnin G.M., Telichko A.V., Gordeev G.I., Burkov S.I., Blank V.D. Study of high-overtone bulk acoustic resonators based on the Me1/AlN/Me2/(100) diamond piezoelectric layered structure. Acoust. Phys. 2015. V. 61. P. 422-433. DOI: 10.1134/S106377101503015X.

Sorokin B.P., Kvashnin G.M., Kuznetsov M.S., Telichko A.V., Burkov S.I. Experimental investigation of the linear and nonlinear elastic properties of synthetic diamond single crystal. J. Siber. Fed. Univ. Math. Phys. 2013. V. 6. N 1. P. 120–126.

Published
2022-10-20
How to Cite
Sorokin, B. P., Asafiev, N. O., Ovsyannikov, D. A., Kvashnin, G. M., Popov, M. Y., Luparev, N. V., Golovanov, A. V., Aksenenkov, V. V., & Blank, V. D. (2022). METHOD OF MICROWAVE ACOUSTIC RESEARCH OF MATERIALS UNDER THE HIGH PRESSURE. ChemChemTech, 65(11), 49-58. https://doi.org/10.6060/ivkkt.20226511.4y
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)

1 2 > >>