CREATION AND RESEARCH OF EPOXY NANOCOMPOSITES WITH CARBON NANOTUBES OBTAINED BY THE FLOAT-CATALYSIS METHOD

  • Vladimir Z. Mordkovich Technological Institute for Superhard and Novel Carbon Materials
  • Aida R. Karaeva Technological Institute for Superhard and Novel Carbon Materials
  • Nikita V. Kazennov Technological Institute for Superhard and Novel Carbon Materials
  • Sergei A. Urvanov Technological Institute for Superhard and Novel Carbon Materials
  • Ekaterina A. Pushina Technological Institute for Superhard and Novel Carbon Materials
  • Stanislav V. Kondrashov All-Russian Scientific Research Institute of Aviation Materials
  • Artem G. Zagora All-Russian Scientific Research Institute of Aviation Materials
  • Natalia V. Antyufeeva All-Russian Scientific Research Institute of Aviation Materials
Keywords: carbon nanotubes, composite material, epoxy, epoxynanocomposite, curing process

Abstract

Epoxy nanocomposites with CNT “felt” obtained by float catalysis as filler were prepared. Such parameters as curing process and glass transition of epoxy nanocomposites and initial epoxy composition, structure and morphology of CNT “felt”, initial epoxy composition and epoxy nanocomposites, specific capacity of epoxy nanocomposites were investigated. The influence of CNT “felt” on curing process in epoxy nanocomposites with different amounts of curing agent was determined. It was found that the presence of CNT “felt” leads to decrease in curing reaction rate for nanocomposites with a stoichiometric composition of the epoxy and curing agent. At the same time, CNT “felt” accelerates the curing reaction with an excess of curing agent. An exothermic reaction between the curing agent and the surface of CNTs was established. It was found that the structure of epoxy nanocomposites has a high degree of heterogeneity: the presence of fiber-like structures and individualized CNTs is observed together with the regions that are typical for CNTs that are fabricated via a catalytic chemical vapor deposition (CVD). Based on the studies performed, it is possible to predict that the uncured compositions already obtained in this work can be used for the manufacture of electrically conductive carbon fiber reinforced plastics and functional coatings.

References

Malik R., McConnell C., Zhang L., Borgemenke R. Kleismit R., Wolf R., Haase M.R., Hsieh Y.-Y., Noga R.,

Alvarez N., Mast D., Shanov V. Processing and applications of CNT sheets in advanced composite materials. Nanotube Superfiber Materials: Science, Manufacturing, Commercialization. 2019. P. 383–429. DOI: 10.1016/B978-0-12-812667-7.00016-1.

Conroy D. Moisala A., Cardoso S., Windle A., Davidson J. Carbon nanotube reactor: Ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up. Chem. Eng. Sci. 2010. V. 65. N 10. P. 2965-2977. DOI: 10.1016/j.ces.2010.01.019.

Meng F. Zhao J., Ye Y., Zhang X., Li Q. Carbon nanotube fibers for electrochemical applications: Effect of enhanced interfaces by an acid treatment. Nanoscale. 2012. V. 4. N 23. P. 7464-7468. DOI: 10.1039/C2NR32332J.

Wang K., Li M., Liu Y.N., Gu Y., Li Q., Zhang Z. Effect of acidification conditions on the properties of carbon nanotube fibers. Appl. Surf. Sci. 2014. V. 292. P. 469-474. DOI: 10.1016/j.apsusc.2013.11.162.

Mordkovich V.Z., Urvanov S.A., Kravchenko V.D., Kazennov N.V., Zhukova E.A., Karaeva A.R. Modification of carbon fiber-polyurethane interface with carbon nanotubes. Mater. Res. Innov. 2016. V. 20. P. 14-17. DOI: 10.1080/14328917.2015.1131419.

Mordkovich, V.Z., Karaeva A.R., Urvanov S.A., Kazennov N.V., Zhukova E.A. Novel Flexible Composites Reinforced with CNT-Grafted Fibers. MRS Advances. V.1. P. 1453-1458. DOI: 10.1557/adv.2016.192.

Kondrashov S.V., Grachev V.P., Akatenkov R.V., Aleksashin V.N., Deev I. S., Anoshkin I.V., Rakov E.G., Irzhak V.I. Modification of epoxy polymers with small additives of multiwall carbon nanotubes. Polym. Sci. - Ser. A. 2014. V. 56. P. 330–336. DOI: 10.1134/S0965545X14030079.

Lin Y., Kim J.‐W., Connell J. W., Lebrón‐Colón M., Siochi E.J. Purification of carbon nanotube sheets. Adv. Eng.

Mater. 2015. V. 17. N 5. P. 674-688. DOI: 10.1002/adem.201400306.

Mordkovich V.Z., Kazennov N.V., Ermolaev V.S., Zhukova E.A., Karaeva A.R. Scaled-up process for producing longer carbon nanotubes and carbon cotton by macro-spools. Diamond Relat. Mater. 2018. V. 83. P. 15-

DOI: 10.1016/j.diamond.2018.01.017.

Bronikowski M.J. CVD growth of carbon nanotube bundle arrays. Carbon. 2006. V. 44. P. 2822-2832. DOI:

1016/j.carbon.2006.03.022.

Brukh R., Mitra S. Mechanism of carbon nanotube growth by CVD. Chem. Phys. Lett. 2006. V. 424. P. 126-132. DOI: 10.1016/j.cplett.2006.04.028.

Zhao T.K., Zhao X., Yan J., Du L., Li T.H. Diametercontrolled synthesis of single-walled carbon nanotubes.

Adv. Mater. Res. 2013. V. 652–654. P. 151–154. DOI: 10.4028/www.scientific.net/AMR.652-654.151.

Weller L., Smail F.R., Elliott J.A., Windle A.H., Boies A.M., Hochgreb S. Mapping the parameter space for direct-spun carbon nanotube aerogels. Carbon. 2019. V. 146. P. 789-812. DOI: 10.1016/j.carbon.2019.01.091.

Rodiles X., Reguero V., Vila M., Alemán B., Arévalo L., Fresno F., de la Peña O’Shea V.A., Vilatela J.J. Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube. Sci. Rep.

V. 9. P. 9239. DOI: 10.1038/s41598-019-45638-6.

Mordkovich V.Z., Karaeva A.R. Prospective ways for production and application of longer carbon nanotubes.

Fullerenes, Nanotubes and Carbon Nanostructures. 2010. V. 18. P. 516-522. DOI: 10.1080/1536383x.2010.488520.

Kuwana K., Saito K. Modeling CVD synthesis of carbon nanotubes: Nanoparticle formation from ferrocene.

Carbon. 2005. V. 43. P. 2088 - 2095. DOI: 10.1016/j.carbon.2005.03.016.

Karaeva A.R., Kazennov N.V., Mordkovich V.Z., Zhukova E.A. Carbon nanotubes by continuous growth,

pulling and harvesting into big spools. Materials Today: Proceedings. 2018. V. 5. P. 25951-25955. DOI: 10.1016/

j.matpr.2018.08.010.

Reguero V., Alemán B., Mas B., Vilatela J.J. Controlling carbon nanotube type in macroscopic fibers synthesized by the direct spinning process. Chem. Mater. 2014. V. 26. P. 3550–3557. DOI: 10.1021/cm501187x.

Kuan C.-F., Chen W.-J., Li Y.-L., Chen C.-H., Kuan H.- C., Chiang C.-L. Flame retardance and thermal stability of

carbon nanotube epoxy composite prepared from sol–gel method. J. Phys. Chem. Solids. 2010. V. 71. P. 539–543.

DOI: 10.1016/j.jpcs.2009.12.031.

Tran T.Q., Fan Z., Mikhalchan A., Liu P., Duong H.M. PostTreatments for Multifunctional Property Enhancement of Carbon Nanotube Fibers from the Floating Catalyst Method. ACS Appl. Mater. Interfaces. 2016. V. 8. P. 7948–7956. DOI: 10.1021/acsami.5b09912.

Published
2020-11-22
How to Cite
Mordkovich, V. Z., Karaeva, A. R., Kazennov, N. V., Urvanov, S. A., Pushina, E. A., Kondrashov, S. V., Zagora, A. G., & Antyufeeva, N. V. (2020). CREATION AND RESEARCH OF EPOXY NANOCOMPOSITES WITH CARBON NANOTUBES OBTAINED BY THE FLOAT-CATALYSIS METHOD. ChemChemTech, 63(12), 22-27. https://doi.org/10.6060/ivkkt.20206312.9у
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)