МЯГКИЙ МЕХАНОХИМИЧЕСКИЙ СИНТЕЗ CuO/ZnO/AL2O3 КАТАЛИЗАТОРА ДЛЯ ПРОЦЕССА ПОЛУЧЕНИЯ МЕТАНОЛА

  • Anastasia A. Kournikova Ивановский государственный химико-технологический университет
  • Ruslan N. Rumyantsev Ивановский государственный химико-технологический университет
  • Andrey V. Afineevsky Ивановский государственный химико-технологический университет
  • Tatyana N. Borisova Ивановский государственный химико-технологический университет
  • Ekaterina S. Severgina Ивановский государственный химико-технологический университет
  • Natalya E. Gordina Ивановский государственный химико-технологический университет
Ключевые слова: катализатор, синтез метанола, механохимическая активация, оксалат меди, оксалат цинка

Аннотация

В работе комплексом методов физико-химических исследований, таких как рентгенофазовый, рентгеноструктурный, синхронный термический и энергодисперисонный анализ, сканирующая электронная микроскопия, низкотемпературная адсорбция-десорбция азота, ИК-Фурье спектроскопия изучены процессы, протекающие на стадии механохимической активации и дальнейшей термической обработки системы Cu(NO3)3·3H2O/Zn(NO3)3·2H2O/Al(NO3)3·9H2O/H2C2O4·2H2O. Установлено, что на стадии механохимической активации происходит интенсивное взаимодействие нитратов меди и цинка со щавелевой кислотой с образованием одноводного оксалата меди (CuC2O4∙Н2О) и двухводного оксалата цинка (ZnC2O4∙2Н2О). Образование оксалатов происходит в начальный период активации 0-15 мин, что подтверждается данными ИК-спектроскопии, рентгенофазового и термического анализа. Прокаливание образцов приводит к формированию тройной оксидной системы CuO/ZnO/Al2O3 и взаимодействию оксидов меди и цинка с образованием твердого раствора. Показано, что с увеличением времени МХА происходит уменьшение размеров областей когерентного рассеяния со 152 Å у исходного образца до 115 Å после 60 мин обработки. При этом происходит накопление дефектов кристаллической структуры со 0,24 до 0,72%, соответственно. Величина удельной поверхности проходит через максимум и при 30 мин обработки составляет 67,1±0,3 м2/г. В ходе обработки формируется мезопористая структура катализатора с суммарным объемом пор 0,132 см3/г. Для проведения процесса масштабирования или подбора мельниц другого типа рассчитаны значения подведенной энергии. Установлено, что для получения катализатора со свойствами, близкими к промышленным аналогам ведущих зарубежных производителей, необходимо проводить обработку с подведенной энергией 79 кДж/г, а процесс прокаливания вести при температуре 350 °С и продолжительности 360 мин.

Для цитирования:

Курникова А.А., Румянцев Р.Н., Афинеевский А.В., Борисова Т.Н., Севергина Е.С., Гордина Н.Е. Мягкий механохимический синтез CuO/ZnO/Al2O3 катализатора для процесса получения метанола. Изв. вузов. Химия и хим. технология. 2024. Т. 67. Вып. 2. С. 21-29. DOI: 10.6060/ivkkt.20246702.6866.

Литература

Trifan B., Lasobras J., Soler J. Modifications in the composition of CuO/ZnO/Al2O3 catalyst for the synthesis of methanol by CO2 hydrogenation. Catalysts. 2021. V. 11. N 7. P. 774. DOI: 10.3390/catal11070774.

Gordina N.E. Mechanochemical activation as method of intensifying synthesis processes of low-modulus zeolites. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 7. P. 4-22 (in Russian). DOI: 10.6060/ivkkt.20186107.5687.

Ilyin A.A., Rumyantsev R.N., Zhukov A.B., Ilyin A.P. Mechanochemical synthesis of iron-molybdenum catalyst for formaldehyde synthesis. Nanotechnol. Russia. 2016. V. 11. N 9-10. P. 569-578. DOI: 10.1134/S1995078016050086.

Bozzano G., Manenti F. Efficient methanol synthesis: Perspectives, technologies and optimization strategies. Progr. Energy Combust. Sci. 2016. V. 56. P. 71-105. DOI: 10.1016/ j.pecs.2016.06.001.

Kholikova S.D., Ismatullaev Kh.M.U., Ismailova L.A. Promising ways of using methanol. Universum: Khim. Biol-ogy. 2021. N 5-2(83). P. 22-26 (in Russian). DOI: 10.32743/ UniChem.2021.83.5.11632.

Abbas I., Kim H., Shin Differences in bifunctionality of ZnO and ZrO2 in Cu/ZnO/ZrO2/Al2O3 catalysts in hydrogenation of carbon oxides for methanol synthesis. Appl. Catal. B: Environ. 2019. V. 258. P. 117971. DOI: 10.1016/ j.apcatb.2019.117971.

Morozov L.N., Pavlov Yu.L., Timoshin E.S. Oxidative reactivation of a copper-containing catalyst for methanol synthesis. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2016. V. 59. N 1. P. 42-45 (in Russian).

Nishida K., Atake I., Li D. Effects of noble metaldoping on Cu/ZnO/Al2O3 catalysts for water–gas shift reaction: Catalyst preparation by adopting “memory effect” of hydrotalcite. Appl. Catal. A: Gen. 2008. V. 337. N 1. P. 48-57. DOI: 10.1016/j.apcata.2007.11.036.

Khaliullin T.F. Analysis of existing catalytic systems for hydrogenation of CO2 with the production of methanol. Aktual. Probl. Prirodopolz. Prirodoobustr. 2022. P. 205-209 (in Russian).

Slotboom, Y., Bos, M. J., Pieper, J. Critical assessment of steadystate kinetic models for the synthesis of methanol over an industrial Cu/ZnO/Al2O3 catalyst. Chem. Eng. J. 2020. V. 389. P. 124181. DOI: 10.1016/j.cej.2020.124181.

Boldyrev D.A., Gryzunova N.N. Physics and metallology of materials with increased catalytic activity. M., Vologda: Infra-Inzheniriya. 2022. P. 196 (in Russian).

Sheboltasov A.G., Vernikovskaya N.V., Chumachenko V.A. Numerical study of the oxidation of methanol into formaldehyde in an environmentally safe microstructured slittype reactor. Science Industry Defense: Proc. of the XXIII All-Russ. Sci. and Techn. Conf. ded. to the 100th ann. of the found. of the Tupolev Design Bureau. Novosibirsk, April 20-22, 2022. Novosibirsk: Novosib. gos. tekhn. univ. 2022. V. 3. P. 229-233 (in Russian).

Centi G., Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today. 2009. V. 148. P. 191–205. DOI: 10.1016/j.cattod.2009.07.075.

Wang B., Li Y., Wu N., Lan C.Q. CO2 bio-mitigation using microalgae. Appl. Microbial. Biotechnol. 2008. V. 79. P. 707-718. DOI: 10.1007/s00253-008-1518-y.

Milani D., Khalilpour R., Zahedi G., Abbas A. A model-based analysis of CO2 utilization in methanol synthesis plant. J. CO2 Util. 2015. V. 10. P. 12–22. DOI: 10.1016/j.jcou. 2015.02.003.

Baltes C., Vukojevic S., Schuth F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J. Catal. 2008. V. 258. P. 334–344. DOI: 10.1016/ j.jcat.2008.07.004.

Ahoba-Sam, C., Olsbye, U., Jens, K.J. Low temperature methanol synthesis catalyzed by copper nanoparticles. Catal. Today. 2018. V. 299. P. 112–119. DOI: 10.1016/j.cattod. 2017.06.038.

Grabow L. C., Mavrikakis M. Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation. ACS Catal. 2011. N 1. V. 4. P. 365–384. DOI: 10.1021/ cs200055d.

Sharma S.K., Khan T.S., Singha R.K. Bal Design of highly stable MgO promoted Cu/ZnO catalyst for clean methanol production through selective hydrogenation of CO2. Appl. Catal. A Gen. 2021. V. 623. P. 2411-2502. DOI: 10.1016 /j.apcata.2021.118239.

Tarasov A.V., Seitz F., Schlogl R., Frei E. In situ quantification of reaction adsorbates in low-temperature methanol synthesis on a high-performance Cu/ZnO: Al catalyst. ACS Catal. 2019. V. 9. N 6. P. 5537–5544. DOI: 10.1021/acscatal. 9b01241.

Behrens M., Zander S., Kurr P. Performance improvement of nanocatalysts by promoterinduced defects in the support material: methanol synthesis over Cu/ZnO:Al. J. Am. Chem. Soc. 2013. V. 135. N 16. P. 6061–6068. DOI: 10.1021/ja31 0456f.

Tourinho F.A., Franck R., Massart R. Aqueous ferrofluids based on manganese and cobalt ferrites. J. Mater. Sci. 1990. V. 25. N 7. P. 3249–3254. DOI: 10.1007/BF00587682.

Cabuil V., Dupuis V., Talbot D., Neveu S. Ionic magnetic fluid based on cobalt ferrite nanoparticles: influence of hydro-thermal treatment on the nanoparticle size. J. Magn. Magn. Mater. 2011. V. 323. N 10. P. 1238–1241. DOI: 10.1016/j.jmmm.2010.11.013.

Silva J.B., Diniz C.F., Lago R.M., Mohallem N.D. Catalytic properties of nanocomposites based on cobalt ferrites dispersed in sol–gel silica. J. Non–Cryst. Solids. 2004. V. 348. P. 201–204. DOI: 10.1016/j.jnoncrysol.2004.08.169.

Cabuil V., Dupuis V., Talbot D., Neveu S. Ionic magnetic fluid based on cobalt ferrite nanoparticles: influence of hydro-thermal treatment on the nanoparticle size. J. Magn. Magn. Mater. 2011. V. 323. N 10. P. 1238–1241. DOI: 10.1016/j.jmmm.2010.11.013.

Ekström T., Chatfield C., Wruss W., Maly–Schreiber M. The use of X–ray diffraction peak–broadening analysis to characterize ground Al2O3 powders. J. Mater. Sci. 1985. V. 20. N 4. P. 1266 – 1274. DOI: 10.1007/BF01026322.

Heegn H. On the connection between ultrafine grinding and mechanical activation of minerals. Ueber den Zusammenhang von Feinstzerkleinerung und mechanischer Aktivierung. Aufbereitungs–Technik. 1989. V. 30. N 10. P. 635 – 642.

Tourinho F. A., Franck R., Massart R. Aqueous ferrofluids based on manganese and cobalt ferrites. J. Mater. Sci. 1990. V. 25. N 7. P. 3249–3254. DOI: 10.1007/BF00587682.

Shamsipur M., Roushani M., Pourmortazavi S.M. Electrochemical synthesis and characterization of zinc oxalate na-noparticles. Mater. Res. Bull. 2013. V. 48. N 3. P. 1275-1280. DOI: 10.1016/j.materresbull.2012.12.032.

Pivovarov D.A., Golubchikova Yu.u., Ilyin A.P. Prepara-tion of metal powders and their oxides by thermal decomposition of Cu, Ni, Co oxalates. Izv. Tomsk. Politekh. Univ. Inzhiniring Georesursov. 2012. V. 321. N 3. P. 11-16 (in Russian).

Ilyin A.A., Veres K.A., Ivanova T.V. Synthesis of a catalyst for low-temperature conversion of carbon monoxide in ammonia production. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 10. P. 91-97 (in Russian). DOI: 10.6060/ivkkt.20216410.6503.

Małecka B., Gajerski R., Małecki A. Mass spectral studies on the mechanism of thermal decomposition of Zn(NO3)2·nH2O. Thermochim. Acta. 2003. V. 404. N 1-2. P. 125-132. DOI: 10.1016/S0040-6031(03)00101-1.

Rumyantsev R.N., Batanov A.A., Tsymbalist I.N. Study of properties of CuO-ZnO-Al2O3 catalysts for methanol synthesis. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 10. P. 56-64 (in Russian). DOI: 10.6060/ivkkt.20216410.6441.

Опубликован
2023-12-26
Как цитировать
Kournikova, A. A., Rumyantsev, R. N., Afineevsky, A. V., Borisova, T. N., Severgina, E. S., & Gordina, N. E. (2023). МЯГКИЙ МЕХАНОХИМИЧЕСКИЙ СИНТЕЗ CuO/ZnO/AL2O3 КАТАЛИЗАТОРА ДЛЯ ПРОЦЕССА ПОЛУЧЕНИЯ МЕТАНОЛА. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 67(2), 21-29. https://doi.org/10.6060/ivkkt.20246702.6866
Раздел
ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ неорг. и органических веществ, теоретические основы

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>