COMPARATIVE ANALYSIS OF THE PROPERTIES OF LTA TYPE ZEOLITE DEPENDING ON THE PRODUCTION METHOD: HYDROTHERMAL AND ULTRASONIC

Keywords: LTA zeolite, ultrasonic treatment, hydrothermal synthesis, temperature-programmed desorption, acid-base properties

Abstract

The aim of the work was to establish the main parameters of the study of the use of ultrasound at the stage of synthesis in search of the physicochemical properties of the LTA type zeolite with the hydrothermal method of production. A main condition for the synthesis of this zeolite is the presence of precursors, namely aluminates and cubic sodium aluminosilicates. Metakaolin, solid sodium hydroxide and aluminum oxide are used as raw materials for the synthesis of zeolite. Ultrasonic treatment is carried out at a frequency of 22 kHz and a frequency of 8 µm at the end of the concentrator for 10 min. The industrial analogue was synthesized according to TU 2163-005-21742510-2004. In this work, ammonia is used as a probe to study the acid–base properties of zeolite structures. The choice of ammonia is due to the high degree of bases, which makes it possible to determine not only strongly acidic centers, but also to combine centers that determine the size of molecules. Dynamic activity in terms of water parameters at breakthrough concentration is observed in the flow protocol. The particle size of zeolites is measured by scanning electron microscopy. It was found that in the sample synthesized using ultrasound, the concentration of exchangeable sodium cations is 2.5 times higher than in the hydrothermal analogue and is 80 and 30 µg-eq/100 g, respectively. The strength and number of acid sites of the synthesized zeolites were determined by the method of thermally programmed desorption of ammonia. For the synthesized LTA zeolite, its values are in the range of 0.06 1019 U/m2, for the industrial analogue it is lower by 5-10% and rarely 0.05 1019 U/m2. Using the data on the kinetics of ammonia desorption at various heating rates, the values of activation energy for ammonia desorption were calculated. The results lie in the range from 18.26 to 74.27 kJ/mol. The study of acid-base properties showed a more developed surface of the zeolite obtained by the ultrasonic method, which explains the greater acidity and activation energy.

For citation:

Gordina N.E., Borisova T.N., Klyagina K.S., Rumyantsev R.N., Prozorov D.A. Comparative analysis of the properties of LTA type zeolite depending on the production method: hydrothermal and ultrasonic. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 9. P. 90-96. DOI: 10.6060/ivkkt.20226509.6633.

Author Biographies

Natalya E. Gordina, Ivanovo State University of Chemistry and Technology

Laboratory for the synthesis, research and testing of catalytic and adsorption systems for the processing of hydrocarbon raw materials, Ivanovo State University of Chemical Technology, Sheremetyevsky Prospekt, 7, Ivanovo, Russian Federation, 153000

 

Doctor of Technical Sciences, Rector of ISUCT

Ksenia S. Klyagina, Ivanovo State University of Chemistry and Technology

Student of the Department of Technology of Inorganic Substances

Ruslan N. Rumyantsev, Ivanovo State University of Chemistry and Technology

Laboratory for the synthesis, research and testing of catalytic and adsorption systems for the processing of hydrocarbon raw materials, Ivanovo State University of Chemical Technology, Sheremetyevsky Prospekt, 7, Ivanovo, Russian Federation, 153000

 

Candidate of Technical Sciences, Dean of the Correspondence Faculty

Dmitriy A. Prozorov, Ivanovo State University of Chemistry and Technology

Laboratory for the synthesis, research and testing of catalytic and adsorption systems for the processing of hydrocarbon raw materials, Ivanovo State University of Chemical Technology, Sheremetyevsky Prospekt, 7, Ivanovo, Russian Federation, 153000

 

Doctor of Chemical Sciences

References

Gordina, N.E., Pro-kof’ev, V.Yu., Khmylova, O.E., Soloninkina, S.G., Kul’pina, Yu.N. Synthesis of the granulated low-modulus zeolites from a metakaolin using ultrasonic treatment. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2016. V. 59. N 11. P. 70–76. DOI: 10.6060/tcct.20165911.5463.

Mubashir M., Fong Y.Y., Keong L.K., Ting S.S. CO2 Adsorption Study Using Deca-Dodecasil 3 Rhombohedral (DDR3) Zeolite Synthesized Via Ultrasonic Irradiation Coupled with Hydrothermal Heating Method. Procedia Eng. 2016. 148. P. 122–127. DOI: 10.1016/J.PROENG.2016.06.492.

Askari S., Halladj R. Ultrasonic pretreatment for hydrother-mal synthesis of SAPO-34 nanocrystals. Ultrason. Sonochem. 2012. 19. P. 554–559. DOI: 10.1016/j.ultsonch.2011.09.006.

Gordina N.E., Prokof’ev V.Yu., Borisova T.N., Elizarova A.M. Synthesis of granular low-modulus zeolites from metakaolin using mechanochemical activation and ultrasonic treatment. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 7. P. 99–106. DOI: 10.6060/ivkkt201962fp.5725

Il'in A.A., Smirnov N.N., Rumyantsev R.N., Ivanova T.V., Il'in A.P. Mechanochemical synthesis of zinc oxides with the use of liquid and gaseous media. Russ. J. Appl. Chem. 2014. 87(10). P. 1412–1416. DOI: 10.1134/S1070427214100036.

Sadeghpour P., Haghighi M., Khaledi K. High-temperature efficient isomorphous substitution of boron into ZSM-5 nanostructure for selective and stable production of ethylene and propylene from methanol. Mater. Chem. Phys. 2018. 217. P. 133–150. DOI: 10.1016/J.MATCHEMPHYS.2018.06.048.

Ilyin A.A., Rumyantsev R.N., Zhukov A.B., Ilyin A.P. Mechanochemical synthesis of iron-molybdenum catalyst for formaldehyde synthesis. Nanotechnol. in Russia. 2016. 11 (9-10). P. 569–578. DOI: 10.1134/S1995078016050086.

Prozorov D.A., Afineevskii A.V., Knyazev A.V., Sukhachev Y.P., Sukhacheva M.D. Deactivation of Supported Nickel-Based Hydrogenation Catalysts with Sulfide Ions. Russ. J. Phys. Chem. A. 2019. 93 (11). 2158–2162. DOI: 10.1134/S0036024419110220.

Melnikov A.A., Gordina N.E., Sinitsyn A.P., Gusev G.I., Gushchin A.A., Rumyantsev R.N. Investigation of the in-fluence of mechanochemical effects on the structure and properties of vermiculite sorbents. J. Solid State Chem. 2022. 306. P. 122795. DOI: 10.1016/j.jssc.2021.122795.

Prokof'ev V.Y., Gordina N.E. Natural mechanisms of mechanochemical interactions in oxide powders. Glass Ceramics. 2014. 71(1-2). P. 10–14. DOI: 10.1007/s10717-014-9605-2.

Gordina N.E., Prokof’ev V.Yu., Kul’pina Yu.N., Petukhova N.V., Gazakhova S.I., Khmylova O.E. Use of Ul-trasonic Processing at Early Stages of LTA Zeolite Synthesis from Metakaolin. Glass Ceram. 2016. 73. 9. P. 334–337. DOI: 10.1016/j.ultsonch.2016.05.008.

Gordina N.E., Prokof’ev V.Yu., Kul’pina Yu.N., Petu-khova N.V., Gazakhova S.I., Khmylova O.E. Effect of ul-trasound on the synthesis of low-modulus zeolites from a metokaolin. Ultrason. Sonochem. 2016. 33. P. 210–219. DOI: 10.1016/j.ultsonch.2016.05.008.

Gordina N.E., Borisova T.N., Klyagina K.S., Astrakhantseva I.A., Ilyin A.A., Rumyantsev R.N. Investigation of NH3 Desorption Kinetics on the LTA and SOD Zeolite Membranes. Membranes. 2022. 12. P. 147. DOI: 10.3390/membranes12020147.

Gordina N.E., Prokof'ev V.Y., Il'in A.P. Extrusion Molding of Sorbents Based on Synthesized Zeolite. Glass Ceram. 2005. 62. P. 282-286. DOI: 10.1007/S10717-005-0092-3.

Aghamohammadi S., Haghighi M., Ebrahimi A. Pathways in particle assembly by ultrasound-assisted spray-drying of kaolin/SAPO-34 as a fluidized bed catalyst for methanol to light olefins. Ultrason. Sonochem. 2019. 53. P. 237–251. DOI: 10.1016/j.ultsonch.2019.01.009.

Yit Siew Ng T., Leng Chew T., Fong Yeong Y. Synthesis of small pore zeolite via ultrasonic-assisted hydrothermal synthesis. Mater. Today. Proc. 2019. 16. P. 1935–1941. DOI: 10.1016/J.MATPR.2019.06.071.

Zhuang S., Hu Z., Huang L., Qin F., Huang Z., Sun C., Shen W., Xu H. Synthesis of ZSM-5 catalysts with tunable mesoporosity by ultrasound-assisted method: A highly stable catalyst for methanol to propylene. Catal. Commun. 2018. 114. P. 28–32. DOI: 10.1016/J.CATCOM.2018.06.001.

Maier W.M. Molecular Sieves: Society of Chemical Industry. London. 1968. 10 p.

Gordina N.E., Prokof’ev V.Y., Hmylova O.E., Kul’pina Y.N. Effect of ultrasound on the thermal behavior of the mixtures for the LTA zeolite synthesis based on metakaolin. J. Therm. Anal. Calorim. 2017. 129. P. 1415-1427. DOI: 10.1007/s10973-017-6357-6.

Shu Y., Ma D., Xu L. Methane dehydro‐aromatization over Mo/MCM‐22 catalysts: a highly selective catalyst for the formation of benzene. Catal. Lett. 2000. 70. P. 67–73. DOI: 10.1023/A%3A1019079603279.

Deng C., Zhang J., Dong L., Huang M., Li B., Jin G., Gao J., Zhang F., Fan M., Zhang L. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite. Sci. Rep. 2016. 6. P. 23382. DOI: 10.1038/srep23382.

Miki N., Shinji N., Naonobu K. IRMS–TPD of ammonia for characterization of acid site in b-zeolite. Micropor. Mesopor. Mater. 2005. 82. P. 105–112. DOI: 10.1016/j.micromeso.2005.03.002.

Xiang L., Hai-fu G., Hua-ming C. Determination of the Activation Energy for Desorption by Derivative Thermogravimetric Analysis. Adsorpt. Sci. Technol. 2006. 24. P. 907-914. DOI: 10.1260/026361707781421960.

Nechaev Yu.S. On the nature, kinetics and limiting values of hydrogen sorption by carbon nanostructures. Phys. Usp. 2006. 49:6. 563-591. DOI: 10.3367/UFNR.0176.200606B.0581.

Holba P., Šesták J. Imperfections of Kissinger evaluation method and crystallization kinetics. Glass. Phys. Chem. 2014. 40. P. 486–495. DOI: 10.1134/S1087659614050058.

Deng C., Zhang J., Dong L., Huang M., Li B., Jin G., Gao J., Zhang F., Fan M., Zhang L., Gong Y. The effect of po-sitioning cations on acidity and stability of the framework structure of Y zeolite. Sci. Rep. 2016. 6. 23382. DOI: 10.1038/srep23382.

Published
2022-07-13
How to Cite
Gordina, N. E., Borisova, T. N., Klyagina, K. S., Rumyantsev, R. N., & Prozorov, D. A. (2022). COMPARATIVE ANALYSIS OF THE PROPERTIES OF LTA TYPE ZEOLITE DEPENDING ON THE PRODUCTION METHOD: HYDROTHERMAL AND ULTRASONIC. ChemChemTech, 65(9), 90-96. https://doi.org/10.6060/ivkkt.20226509.6633
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)

1 2 > >>