PLASMACHEMICAL GENERATION OF NITRIC OXIDES IN AIR PLASMAS FOR MEDICAL APPLICATIONS
Abstract
Nitric oxide is well known as a poly functional regulator of different physiological processes in human body and therefore could be used for therapeutic purposes in different medical applications. In this review mechanism of nitric oxide generation in gas plasma and biological mechanisms of nitric oxide containing plasma gas treatment of tissues are described. In addition to nitric oxide the other biologically active species like hydrogen peroxide and nitrogen dioxide are formed in air plasma at atmospheric pressure. Synergetic action of molecules NO/H2O2 и NO/O2, generated in plasma gas results to manifold increase of sterilization activity of plasma mixture to bacteria and at the same time the toxicity of these species to living cells is low. Plasma gas exhibits therapeutic action on human tissues. On the one hand plasma gas contains molecules Н2О2, NO and NO2 acting as a antimicrobial agents and promoting sterilization, on the other hand the presence of significant concentration of NO leads to effective regeneration of damaged tissue. These processes are complementary and finally result to effective healing of diabetic trophic ulcer and other diseases in the oncology, ophthalmology, dentistry, purulent surgery, battlefield surgery and so on. Peculiarities of different discharges which could be used for generation of nitric oxide, like arc discharge, gliding arc discharge, microwave discharge, radiofrequency and pulsed discharges are discussed. The production of nitric oxide depending on type of discharge and plasma parameters like discharge power, gas flow rate and electrode configuration are analyzed. The efficacy of nitric oxide generation in different discharges is compared.
References
Fleming I., Busse R. Endothelial disfunction: a novel therapeutic target. NO: the primary EDRF. J. Mol. Cell Cardiol. 1999. V. 31. P. 5-11. DOI: 10.1006/jmcc.1998.0839.
Li H., Forstermann U. Nitric oxide in the pathogenesis of vascular disease. J. Pathol. 2000. V. 190. P. 244-254. DOI: 10.1002/(SICI)1096-9896(200002)190:3<244::AID-PATH575> 3.0.CO;2-8.
Patel R.P., Moellering D., Murphy Ulrich J., Jo H., Beckman J.S., Darley-Usmar V. Cell signaling by reactive nitrogen and oxy-gen species in atherosclerosis. Free Rad. Biol. Med. 2000. V. 28. P. 1780-1794. DOI: 10.1016/S0891-5849(00)00235-5.
Yang T., Zelikin A.N., Chandrawati R. Progress and promise of nitric oxide-releasing platforms. Adv. Sci. 2018. V. 5. N 6. P. 1701043. DOI: 10.1002/advs.201701043.
Graves D.B. Low temperature plasma biomedicine: A tutorial review. Phys. Plasmas. 2014. V. 21. N 8. P. 080901. DOI: 10.1063/1.4892534.
Keh D., Gerlach H., Falke K. Inhalation therapy with nitric oxide gas. In: Oxide Nitric (ed) Berndmayer. Heidelberg: Springer. 2000. 399 p. DOI: 10.1007/978-3-642-57077-3_18.
Ichinose F., Roberts J.D., Zapol W.M. Inhaled nitric oxide a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 2000. N 4109. P. 3106–3111. DOI: 10.1161/01.CIR.0000134595.80170.62.
Bhatraju P., Crawford J., Hall M., Lang J.D. Inhaled nitric oxide: current clinical concepts. Nitric Oxide. 2015. N 50. P. 114–128. DOI: 10.1016/j.niox.2015.08.007.
Shekhter A.B., Kabisov R.K., Pekshev A.B., Kozlov N.P., Perov I.L. Experimental and clinical substantiation of plasmadynamic therapy of wounds with nitric oxide. Bull. Experiment. Biol. Medits. 1998. V. 126. N 8. P. 210-215 (in Russian). DOI: 10.1007/BF02446923.
Vasilets V.N., Shekhter A.B. Medical and biological applications of plasma sources of nitrogen oxides. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2012. V. 55. N 4. P. 21-25 (in Russian)
Yang Y., Qi P.K., Yang Z.L., Huang N. Nitric oxide based strate-gies for applications of biomedical devices. Biosurf. Biotribol. 2015. V. 1. P. 177–201. DOI: 10.1016/j.bsbt.2015.08.003.
Fridman A. Plasma Chemistry. Cambridge: Cambridge University Press. 2008. 355 p.
Kuhn S., Bibinov N., Gesche R., Awakowicz P. Non-thermal at-mospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications. Plasma Sources Sci. Technol. 2010. V. 19. P. 015013-17. DOI: 10.1088/0963-0252/19/1/015013.
Uhm H.S., Na Y.H., Choi E.H., Cho G. Dissociation and excitation coefficients of nitrogen molecules and nitrogen monoxide genera-tion. Phys. Plasmas. 2013. V. 20. N 8. P. 083502-14. DOI: 10.1063/1.4817291.
Vasilets V.N., Shekhter A.B, Guller A.E., Pekshev A.V. Air plasma-generated nitric oxide in treatment of skin scars and articular musculoskeletal disorders: Preliminary review of observations. Clinic. Plasma Med. 2015. V. 3. P. 32–39. DOI: 10.1016/j.cpme.2015.05.001.
Farias-Eisner R., Chaudhuri G., Aeberhard E., Fukuto J.M. The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility. J. Biol. Chem. 1996. V. 271. P. 6144–51. DOI: 10.1074/jbc.271.11.6144.
Kotamraju S., TampoY., Keszler A., Chitambar C.R., Joseph J., Haas A.L. Nitric oxide inhibits H2O2-induced transfer in receptor-dependent apoptosis in endothelial cells: role of ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. 2003. V. 100. P. 10653–8. DOI: 10.1073/pnas.1933581100.
Yoshioka Y., Kitao T., KishinoT., Yamamuro A., Maeda S. Nitric oxide protects macrophages from hydro-gen peroxide-induced apoptosis by inducing the for-mation of catalase. J. Immunol. 2006. V. 176. P. 4675–81. DOI: 10.4049/jimmunol.176.8.4675.
Pacelli R., Wink D.A., Cook J.A., Krishna M.C., DeGraff W., Friedman N. Nitric oxide potentiates hy-drogen peroxide-induced killing of Escherichia coli. J. Exp. Med. 1995. V. 182. P. 1469–79. DOI: 10.1084/jem.182.5.1469.
Chotigeat U., Khorana M., Kanjanapattanakul W. Inhaled nitric oxide in new-borns with severe hypoxic respiratory failure. J. Med. Assoc. Thail. 2007. V. 90. P. 266–71.
Reshetov I.V., Kabisov R.K., Shekhter A.B., Pekshev A.V., Maneiylova M.V. The use of air-plasma apparatus "Plason" in the modes of coagulation and NO-therapy in reconstructive plastic sur-gery in cancer patients. Annal. Plastich. Rekonstr. Estet. Khirurgii. 2000. N 4. P. 24-39 (in Russian).
Fridman G., Friedman G., Gutsol A., Shekhter A.B., Vasilets V.N., Fridman A. Applied plasma medicine. Plasma Proc. Polym. 2008. V. 5. P. 503–33. DOI: 10.1002/ppap.200700154.
Vasilets V.N., Gutsol A., Shekhter A. B., Fridman A. Plasma med-icine. High Energy Chem. 2009. V. 43. P. 229–33. DOI: 10.1134/S0018143909030126.
Pekshev A.V., Kozlov N.P., Vagapov A.B., Malikov V.N., Sharapov N.A. The device "Plason" - the principles of the formation of air-plasma and NO-containing streams. In the book. "NO therapy: theoretical aspects, clinical experience and problems of the use of exogenous nitric oxide in medicine." M: Mir. 2001. 191 p. (in Rus-sian)
Deng X.L., Nikiforov A.Y., Vanraes P., Leys C. Direct current plasma jet at atmospheric pressure operating in ni-trogen and air. J. Appl. Phys. 2013. V. 113. N 2. P. 023305-10. DOI: 10.1063/1.4774328.
Gundorova R.A., Chesnokova N.B., Shekhter A.B., Davydova N.G., Pekshev A.V., Kvasha O.I., Beznos O.V., Gorbasheva O.A. Effect of a gas stream contain-ing nitric oxide on the structures of the eyeball (experi-mental study). Vest. Oftalmol. 2001. N 4. P. 29-32 (in Russian).
Czernichowski A. Gliding arc: applications to engineering and environment control. Pure Appl. Chem. 1994. V. 66. N 6. P. 1301–1310. DOI: 10.1351/pac199466061301.
Fridman A., Nester S., Kennedy L.A., Saveliev A., Mu-taf-Yardimci O. Gliding arc gas discharge. Prog. Energy. Combust. Sci. 1999. V. 25. N 2. P. 211–231. DOI: 10.1016/S0360-1285(98)00021-5.
Richard F., Cormier J.M., Pellerin S., Dalaine V., Chapelle J. NO production in a gliding arc discharge. In: Proceedings of the 4th in-ternational thermal plasma process conference. 1997. P. 343–351.
Bo Z., Yan J., Li X., Chi Y., Cen K. Nitrogen dioxide formation in the gliding arc discharge assisted decomposi-tion of volatile organic compounds. J. Hazard Mater. 2009. V. 166. N 2. P. 1210–1216. DOI: 10.1016/j.jhazmat.2008.12.030.
Gritsinin S.I., Knyazev V.Yu., Kossyi I.A., Popov N.A. Microwave torch as a plasma-chemical generator of nitro-gen oxides. Fizika Plazmy. 2006. V. 32. N 6. P. 565–570 (in Russian). DOI: 10.1134/S1063780X06060092.
Taras P., Dusk V., Vyskocl J. Study of the NO synthesis in a microwave plasma at atmospheric pressure. Acta Phys. Slov. 1985. V. 35. N 2. P. 112–117.
Uhm H.S., Cho S.C., Park I.G., Hong M.S. Reduction of plasma nitrogen oxides by flames of hydrocarbon fuel. J. Korean. Phys. Soc. 2008. V. 52. P. 1800–1803. DOI: 10.3938/jkps.52.1800.
Kovacs R., Bibinov N., Awakowicz P., Porteanu H.E., Kuhn S., Gesche R. An integrated atmospheric microwave plasma source. Plasma Proc. Polym. 2009. V. 6(S1). P. S233–S236. DOI: 10.1002/ppap.200930603.
Liebmann J., Scherer J., Bibinov N., Rajasekaran P., Kovacs R., Gesche R., Awakowicz P., Kolb-Bachofen V. Biological effects of nitric oxide generated by an at-mospheric pressure gas-plasma on human skin cells. Ni-tric Oxide. 2011. V. 24. N 1. P. 8–16. DOI: 10.1016/j.niox.2010.09.005.
Lavoie G.A., Heywood J.B., Keck J.C. Experimental and theoreti-cal study of nitric oxide formation in internal combustion engines. Combust. Sci. Technol. 1970. V. 1. N 4. P. 313–326. DOI: 10.1088/0963-0252/19/1/015013.
Stoffels E., Gonzalvo Y.A., Whitmore T.D., Seymour D.L., Rees J.A. A plasma needle generates nitric oxide. Plasma Sources Sci. Technol. 2006. V. 15. N 3. P. 501–506. DOI: 10.1088/0963-0252/15/3/028.
Pipa A.V., Bindemann T., Foest R., Kindel E., Welt-mann K.D. Absolute production rate measurements of ni-tric oxide by an atmospheric pressure plasma jet (APPJ). J. Phys. D. Appl. Phys. 2008. V. 41. N 19. P. 194011-19. DOI: 10.1088/0022-3727/41/19/194011.
Van Gessel A.F.H., Alards K.M.J., Bruggeman P.J. NO production in an RF plasma jet at atmospheric pressure. J. Phys. D. Appl. Phys. 2013. V. 46. N 26. P. 265202-12. DOI: 10.1088/0022-3727/46/26/265202.
Iseni S., Zhang S., van Gessel A.F.H., Hofmann S., van Ham B.T.J, Reuter S., Weltmann K.D., Bruggeman P.J. Nitric oxide density distributions in the effluent of an RF argon APPJ: effect of gas flow rate and substrate. New J. Phys. 2014. V. 16. N 12. P. 123011. DOI: 10.1088/1367-2630/16/12/123011.
Gaens W., Bruggeman P.J., Bogaerts A. A numerical analysis of the NO and O generation mechanism in a needle-type plasma jet. New J. Phys. 2014. V. 16. N 6. P. 063054-60. DOI: 10.1088/1367-2630/16/6/063054.
Hu H., Liang H., Li J, Zhao Q., He J. Study on production of inhaled nitric oxide for medical applications by pulsed discharge. IEEE Trans. Plasma. Sci. 2007. V. 35. N 3. P. 619–625. DOI: 10.1109/TPS.2007.896782.
Namihira T., Katsuki S., Hackam R., Akiyama H., Okamoto K. Production of nitric oxide using a pulsed arc discharge. IEEE Trans. Plasma Sci. 2002. V. 30. N 5. P. 1993–1998. DOI: 10.1109/TPS.2002.807502.
Namihira T., Tsukamoto S., Wang D., Katsuki S., Hackam R., Okamoto K., Akiyama H. Production of ni-tric monoxide using pulsed discharges for a medical ap-plication. IEEE Trans. Plasma Sci. 2000. V. 28. N 1. P. 109–114. DOI: 10.1109/27.842877.
Sakai S., Matsuda M., Wang D., Namihira T., Akiyama H., Okamoto K., Toda K. Nitric oxide generator based on pulsed arc discharge. Acta Phys. Polonica A. Gen. Phys. 2009. V. 115. N 6. P. 1104–1106. DOI: 10.12693/APhysPolA.115.1104.
Yu B., Muenster S., Blaesi A.H., Bloch D.B., Zapol W.M. Producing nitric oxide by pulsed electrical dis-charge in air for portable inhalation therapy. Sci. Transl. Med. 2015. V. 7. N 294. P. 107-111. DOI: 10.1126/scitranslmed.aaa3097.
Sakai S, Matsuda M, Wang D, Kiyan T, Namihira T, Akiyama H, Okamoto K, Toda K. A compact nitric ox-ide supply for medical application. In: 16th IEEE interna-tional pulsed power conference. 2007. V. 1. P. 752–755. DOI: 10.1109/PPPS.2007.4651949.
Hu H., Weipeng C., Jinli Z., Xi L., Junjia H. Influence of plasma temperature on the concentration of NO pro-duced by pulsed arc discharge. Plasma Sci. Technol. 2012. V. 14. N 3. P. 257–262. DOI: 10.1088/1009-0630/14/3/13.
Hu H., Bin B., Heli W., Haiyan L., Junjia H., Zhenghao H., Jin L. The effect of flow distribution on the concentration of NO pro-duced by pulsed arc discharge. Plasma Sci. Technol. 2007. V. 9. N 6. P. 766-769. DOI: 10.1088/1009-0630/9/6/30.
Korolev Y.D., Frants O.B., Landl N.V., Suslov A. Low-current plasmatron as a source of nitrogen oxide mole-cules. IEEE Trans. Plasma Sci. 2012.V. 40. N 11. P. 2837–2842. DOI: 10.1109/TPS.2012.2201755.
Rousseau A., Dantier A., Gatilova L., Ionikh Y., Ropcke J., Tolmachev Y. On NOx production and vola-tile organic compound removal in a pulsed microwave discharge in air. Plasma Sources Sci. Technol. 2005. V. 14. N 1. P. 70–75. DOI: 10.1088/0963-0252/14/1/009.